Energy Systems, MSEneS

The Master of Science in Energy Systems (https://mie.northeastern.edu/academics/graduate-studies/ms-enes/) (MSEneS) integrates engineering, business, and policy into a high-level signature, multidisciplinary graduate program. Energy systems students have an opportunity to learn how to leverage business skills and public policy knowledge to accomplish their engineering goals. This program is ideal for the engineer or technical business major who is interested in pursuing an industrial or public-planning-based career.

The program's mission is to educate students in current and future energy systems technologies, to integrate energy-related technologies with the economics and financial considerations required to implement them, and to develop leadership and decision-making skills to implement energy systems in either the private or public sectors of the global market. The program will expose students to a combination of academic and corporate experience in energy systems.

The program curriculum features a multidisciplinary range of electives from five different academic colleges at Northeastern. The curriculum is flexibly designed with a set of four core courses in engineering knowledge and finance in addition to four electives. The core courses help relate these electives back to energy-related engineering concepts, including power strategies, energy renewal, sustainable energy solutions, energy storage, energy conversion, and energy efficiency. By integrating concepts across these disciplines, our students learn that implementing energy solutions requires an economic solution as well as an engineering one.

Students are exposed to business educators and practicing professionals and have the opportunity to participate in a six-month co-op experience. Practicing professionals with experience in the industry who have successfully implemented energy systems or devices and policies are actively involved in the program as adjunct professors and invited speakers. Through this curriculum and interaction with practitioners, students should be prepared to effectively integrate energy system development over a broad spectrum of technologies with the financial requirements to successfully implement them and to compete in the global energy market.

Successful graduates of the program will be involved in the decision making or policy planning that will deliver minimally polluting, energy-efficient systems to the global market. They will have the base training necessary to lead efforts within companies to plan and implement new energy-generation investments, realize energy-efficiency improvements specifically at the system level, and participate in energy and environmental markets such as cap-and-trade systems.

General Degree Requirements

To be eligible for admission to any of the MS degree programs, a prospective student must hold a Bachelor of Science degree in engineering, science, mathematics, or an equivalent field. Students in all master's degree programs must complete a minimum of 32 semester hours of approved course work (exclusive of any preparatory courses) with a minimum grade-point average (GPA) of 3.000. Students can complete a master's degree by pursuing any of one of the three tracks: course work option, project option, and thesis option. Specific degree requirements for each of these tracks can be found under the Program Requirements tab. Students may pursue any program either on a full-time or part-time basis; however, certain restrictions may apply.

Plan of Study and Course Selection

It is recommended that all new students attend orientation sessions held by the MIE department and the Graduate School of Engineering to acquaint themselves with the course work requirements and research activities of the department as well as with the general policies, procedures, and expectations.

In order to receive proper guidance with their course work needs, all MS students are strongly encouraged to complete and submit a fully signed Plan of Study (PS) to the department before enrolling in second-semester courses. This form not only helps the students manage their course work but it also helps the department to plan for requested course offerings. The PS form may be modified at any time as the students progress in their degree programs.

Students pursuing study or research under the guidance of a faculty member can choose project option by taking Master's Project (ENSY 7945). An MS project must be petitioned to the MIE Graduate Affairs Committee and approved by both the faculty member (instructor for Master's Project) and the student's academic advisor. The petition must clearly state the reason for taking the project course; a brief description of the goals; as well as the expected outcomes, deliverables, and grading scheme.

Change of Program/Concentration

Students enrolled in any of the MIE department programs or concentrations may change their current program or concentration no sooner than the beginning of their second full-time semester of study. In order for the program or concentration change request to be considered by the MIE Graduate Affairs Committee, the student must not be in the first semester of their current program, must have a 3.3 GPA, and have completed at least 8 semester hours of required course work in their sought program at Northeastern.

Graduate Certificate Options

Students enrolled in a master's degree have the opportunity to also pursue one of the many engineering graduate certificate options in addition to or in combination with the MS degree. Students should consult their faculty advisor regarding these options (https://catalog.northeastern.edu/graduate/engineering/graduate-certificate-programs/).

GORDON INSTITUTE OF ENGINEERING LEADERSHIP

Master's Degree in Energy Systems with Graduate Certificate in Engineering Leadership

Students may complete a Master of Science in Energy Systems in addition to earning a Graduate Certificate in Engineering Leadership (https://catalog.northeastern.edu/graduate/engineering/multidisciplinary/engineering-leadership-graduate-certificate/). Students must apply and be admitted to the Gordon Engineering Leadership Program in order to pursue this option. The program requires fulfillment of the 16-semester-hour curriculum required to earn the Graduate Certificate in Engineering Leadership, which includes an industry-based challenge project with multiple mentors. The integrated 36-semester-hour degree and certificate will require 20 hours of advisor-approved energy systems technical courses.

Program Requirements

- Concentrations and course offerings may vary by campus and/or by program modality. Please consult with your advisor or admissions coach for the course availability each term at your campus or within your program modality.
- Certain options within the program may be *required* at certain campuses or for certain program modalities. Please consult with your advisor or admissions coach for requirements at your campus or for your program modality.

Core Requirements

Complete all courses and requirements listed below unless otherwise indicated.

Code	Title	Hours
Required Courses		
EMGT 6225	Economic Decision Making	4
EMGT 6305	Financial Management for Engineers	4
or FINA 6309	Foundations of Accounting and Finance	
ENSY 5000	Fundamentals of Energy System Integration	4
ENSY 5700	Renewable Energy Development	4

Restricted Electives

Code	Title	Hours
Complete a minimum of 8 semester hours from the following:		
CHME 5621	Electrochemical Engineering	
ENSY 5100	Hydropower	
ENSY 5200	Energy Storage Systems	
ENSY 5300	Electrochemical Energy Storage	
ENSY 5400	Power Plant Design and Analysis	
ENSY 5500	Smart Grid	
ENSY 5585	Wind Energy Systems	
ENSY 5650	Geologic Energy Systems for Energy Generation and Carbon Sequestration	
ENSY 5800	Applications of Artificial Intelligence in Energy Systems	
MATL 6270	Principles, Devices, and Materials for Energy Storage and Energy Harvesting	
ME 5685	Solar Thermal Engineering	
ME 6200	Mathematical Methods for Mechanical Engineers 1	

Other Electives

Code	Title	Hours
An additional 8 semester hou program director.	rs can either be taken from the list above or from the following list below or by approval of	8
CHEM 5614	Electroanalytical Chemistry	
CHEM 5651	Materials Chemistry of Renewable Energy	
EECE 5670	Sustainable Energy: Materials, Conversion, Storage, and Usage	
EECE 5680	Electric Drives	
EECE 5682	Power Systems Analysis 1	
EECE 5684	Power Electronics	
EMGT 5220	Engineering Project Management	
ENSY 7945	Master's Project	

ME 5690	Gas Turbine Combustion
ME 7270	General Thermodynamics
ME 7300	Combustion and Air Pollution
ME 7305	Fundamentals of Combustion
PPUA 5264	Energy Democracy and Climate Justice: Technology, Policy, and Social Change
SBSY 5200	Sustainable Engineering Systems for Buildings

Online Course List

All required courses and many electives are offered as online courses.

Program Credit/GPA Requirements

32 total semester hours required Minimum 3.000 GPA required