The chemical engineering program offers students a broad education built on fundamentals in science, mathematics, and engineering, which are then applied to a variety of contemporary problems using modern tools, such as computational software and computer-aided design. Chemical engineers have traditionally been employed in chemical, petrochemical, agricultural chemical, pulp and paper, plastics, cosmetics, and textiles industries and in consulting and design firms. Today, chemical engineers also play an integral role in emerging biological and advanced materials fields, including nanotechnology. For example, chemical engineers are creating new materials needed for space exploration, alternative energy sources, and faster, self-powered computer chips. In biotechnology and bioengineering, chemical engineers are working to understand human diseases, developing new therapies and drug delivery systems, and producing new medicines through cell culture techniques. Chemical engineers employ nanotechnology to revolutionize sensors, security systems, and medical diagnostics and treatments. In addition to creating important products, chemical engineers are also involved in protecting our environment by exploring ways to reduce acid rain and smog; to recycle and reduce wastes; to develop new sources of environmentally clean energy; and to design inherently safe, efficient, and “green” processes. The role of chemical engineering is to develop new products and to design processes while reducing costs, increasing production, and improving the quality and safety of new products.

Mission of the Department

The faculty of the chemical engineering program are committed to providing a practice-oriented education through project and problem-based learning and drawing connections between classroom learning and co-op experiences. The educational curriculum provides fundamentals in mathematics, physical sciences, and engineering science as well as real-world design and laboratory experiences. Through the university’s academic core requirements, NUpath, students gain awareness of the impact of engineering decisions in a broader societal and ethical context. Cooperative education enables students to integrate practical workplace knowledge with classroom learning so the educational experiences are synergistic and deepen the learning process. The chemical engineering community encourages professional development through active participation and leadership in student organizations, professional societies, and departmental activities. As a result, the chemical engineering program prepares students for industrial careers, graduate programs, or professional medical, law, and business schools.

Other Programmatic Features

By participating in our cooperative education program, our graduates will have an opportunity to explore what career objectives fit their own skills and interests. The goal of this component of our program is to offer students valuable professional experience and contacts that will help get them started in their professional career, as well as to develop career management skills. The co-op program parallels the academic program in level of responsibility and sophistication.

Other Programmatic Features

The department also offers significant research opportunities throughout all fields of chemical engineering, including participating in research centers based in our department and college, as well as new interdisciplinary graduate and professional master’s programs. The chemical engineering curriculum is continuously evaluated and improved to ensure that graduates of the program are given every opportunity for future success as professional chemical engineers and are prepared for graduate or professional school.

Programs

Bachelor of Science in Chemical Engineering (BSCHE)

- Chemical Engineering (http://catalog.northeastern.edu/undergraduate/engineering/chemical-engineering-bsche/)
- Chemical Engineering and Physics (http://catalog.northeastern.edu/undergraduate/engineering/chemical-engineering-physics-bsche/)
- Chemical Engineering and Biochemistry (http://catalog.northeastern.edu/undergraduate/engineering/chemical-engineering-biochemistry-bs/)

Minor

- Biochemical Engineering (http://catalog.northeastern.edu/undergraduate/engineering/chemical/biochemical-engineering-minor/)

Accelerated Programs

See Accelerated Bachelor/Graduate Degree Programs (http://catalog.northeastern.edu/undergraduate/engineering/accelerated-bachelor-graduate-degree-programs/#programstext)

Courses

Chemical Engineering Courses

Search CHME Courses using FocusSearch (http://catalog.northeastern.edu/class-search/?subject=CHME)

CHME 1990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CHME 2308. Conservation Principles in Chemical Engineering. 4 Hours.
Examines the applications of fundamental laws of mass and energy conservation to chemical and physical processes. Emphasizes material and energy balances on chemical processes. Offers students an opportunity to develop skills in applying chemistry, physics, and mathematics to identify and solve chemical engineering problems.

CHME 2310. Transport Processes 1. 4 Hours.
Covers the fundamentals of transport of incompressible and compressible fluids (fluid flow) along with energy transport. Concepts are continued in CHME 3312 with emphasis on heat transport. The methods taught are relevant to the analysis of engineering processes in a number of industries, including chemical, pharmaceutical, food, energy, biotechnology, and materials.
CHME 2311. Lab for CHME 2310. 2 Hours.
Accompanies CHME 2310. Uses experiment to explore the principles of momentum and energy transport. Offers students an opportunity to obtain practical laboratory experience and to develop technical writing and oral presentation skills. Students are asked to both design and perform experiments in the context of current fields of chemical engineering, to discover fundamental transport principles, and to develop engineering solutions through experiments using the fundamental transport principles.

CHME 2320. Chemical Engineering Thermodynamics 1. 4 Hours.
Covers the first and second laws of thermodynamics and their application to batch and flow systems, heat effects in chemicals, and physical properties/real fluids. Applies basic principles and mathematical relations to the analysis and solution of engineering problems.

CHME 2322. Chemical Engineering Thermodynamics 1 Abroad. 4 Hours.
Covers the first and second laws of thermodynamics and their application to batch and flow systems, heat effects in chemicals, and physical properties/real fluids. Applies basic principles and mathematical relations to the analysis and solution of engineering problems. Taught abroad. May be repeated without limit.

CHME 2949. Introductory Directed Research in Chemical Engineering. 4 Hours.
Offers first- and second-year students an opportunity to pursue project and other independent inquiry opportunities under faculty supervision. The course is initiated with a student-developed proposal, including expected learning outcomes and research products, which is approved by a faculty member in the department. Requires permission of instructor.

CHME 2990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CHME 2991. Research in Chemical Engineering. 1-4 Hours.
Offers an opportunity to conduct introductory-level research or creative endeavors under faculty supervision.

CHME 3312. Transport Processes 2 and Separations. 4 Hours.
Continues CHME 2310. Presents the fundamentals and applications of energy transport, mass transport, and simultaneous energy/mass transport. Emphasizes separation processes using these principles. The methods taught are relevant to the analysis of engineering processes in a number of industries, including chemical, pharmaceutical, food, energy, biotechnology, and materials.

CHME 3313. Lab for CHME 3312. 2 Hours.
Accompanies CHME 3312. Uses experiment to explore the principles of mass and energy transport as well as separation processes. Offers students an opportunity to obtain practical laboratory experience and to develop technical writing and oral presentation skills. Students are asked to both design and perform experiments in the context of current fields of chemical engineering, to discover fundamental transport principles, and to develop engineering solutions through experiments using the fundamental transport principles.

CHME 3315. Chemical Engineering Experimental Design 1. 4 Hours.
Offers students an opportunity to obtain hands-on laboratory experience and to develop safety, teamwork, problem-solving, organizational, technical writing, and oral presentation skills. Focuses on fundamental momentum transport principles and skills to develop and design engineering solutions through experiments in the context of the current fields of chemical engineering. Emphasizes the hazards associated with those chemical engineering experiments.

CHME 3316. Recitation for CHME 3315. 0 Hours.
Accompanies CHME 3315. Presents discussions related to laboratory safety, experimental design, data analysis, data presentation, and report writing strategies.

CHME 3322. Chemical Engineering Thermodynamics 2. 4 Hours.
Continues CHME 2320. Covers thermodynamic properties of mixtures; fugacity and the fugacity coefficients from equations of state for gaseous mixtures; liquid phase fugacities and activity coefficients for liquid mixtures; phase equilibria; the equilibrium constant for homogeneous gas-phase reactions; and extension of theory to handle simultaneous, heterogeneous, and solution reactions.

CHME 3990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CHME 4315. Chemical Engineering Experimental Design 2. 4 Hours.
Offers students an opportunity to obtain hands-on laboratory experience and to develop safety, teamwork, problem-solving, organizational, technical writing, and oral presentation skills. Focuses on the discovery of fundamental heat and mass transport principles. Those fundamentals are used to develop and design engineering solutions through experiments in the context of the current fields of chemical engineering. Focuses on the hazards associated with these chemical engineering experiments and the materials handled during laboratory.

CHME 4316. Recitation for CHME 4315. 0 Hours.
Accompanies CHME 4315. Presents discussions related to laboratory safety, experimental design, data analysis, data presentation, and report writing strategies.

CHME 4510. Chemical Engineering Kinetics. 4 Hours.
Covers fundamental theories of the rate of chemical change in homogeneous reacting systems, integral and differential analysis of kinetic data; design of batch and continuous-flow chemical reactors; and an introduction to heterogeneous reactions and reactor design.

CHME 4512. Chemical Engineering Process Control. 4 Hours.
Covers Laplace transform and its use in solving ordinary differential equations; modeling liquid-level, temperature, and composition dynamics; linearization of nonlinear systems; first- and second-order system transfer functions; and PID control; computer simulation of open- and closed-loop systems; control system stability; and feed-forward and cascade control.

CHME 4624. Chemical Process Safety. 4 Hours.
Introduces students to important technical fundamentals as applied to chemical process safety. Demonstrates good chemical process safety practice through chemical plant trips, visiting experts, and video presentations.

CHME 4625. Chemical Process Safety Abroad. 4 Hours.
Introduces important technical fundamentals as applied to chemical process safety internationally. Demonstrates good chemical process safety practice through chemical plant visits, visiting experts, and video presentations in the international setting in which the course is offered. May be repeated without limit.

CHME 4701. Capstone Design 1: Process Analysis. 4 Hours.
Focuses on the design of a chemical process with a particular emphasis on separation technologies. Topics include computer simulation of steady-state processing conditions, selecting process operations, reactor design, preparing flow sheets and stream tables, and evaluating the economics of a chemical process design.
CHME 4703. Capstone Design 2: Chemical Process Design. 4 Hours. Offers students an opportunity to participate in an open-ended, project-based design course where teams design innovative solutions of a comprehensive chemical process. Considers public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. Students apply engineering knowledge from their undergraduate academic studies to design a chemical process that handles mass and energy balances. Requires proof of concept data from prototypes, experiments, or simulations of the process to show the design is feasible and that use of the data improves the design. Team presentations, in multiple formats, are shared with the chemical engineering community for feedback and evaluation. Requires multiple progress reports, submitted by the team, which results in the final design report at the end of the semester.

CHME 4705. Recitation for CHME 4703. 0 Hours. Accompanies CHME 4703. Provides a common meeting platform for all students in individual sections of CHME 4703 to meet on a weekly basis. Guest speakers and common lectures will be delivered during this recitation.

CHME 4990. Elective. 1-4 Hours. Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CHME 4991. Research. 4 Hours. Offers an opportunity to conduct research under faculty supervision. May be repeated up to two times.

CHME 4992. Directed Study. 1-4 Hours. Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

CHME 5101. Fundamentals of Chemical Engineering Analysis. 4 Hours. Offers graduate students from undergraduate studies outside of traditional chemical engineering an opportunity to obtain a practical understanding of the core principles behind the chemical engineering discipline. Topics include vector and tensor calculus, continuum mechanics and thermodynamics, macroscopic and microscopic analyses of mass, momentum, and energy conservation; the fundamental principles of processes in which mass, energy, and momentum are transported; consequences of the Second Law of Thermodynamics, the principles governing phase and chemical reaction equilibrium; the fundamental theories of chemical reaction kinetics and reactor design; and the mathematical formulation and solution of the underlying equations involved in all these topics.

CHME 5105. Materials Characterization Techniques. 4 Hours. Covers the fundamentals and applications of materials characterization techniques. Major techniques include electron microscopy imaging, microbeam analysis, diffraction techniques, and near-field scanning probe techniques. Offers students an opportunity to learn transmission electron microscopy, scanning electronmicroscopy, electron and X-ray beam analysis, scanning tunneling microscopy, atomic force microscopy, and scanning near-field optical microscopy. Covers the applications of these techniques on both solid-state materials, such as metal and ceramics, and soft materials and biomaterials, such as polymers and nanostructured materials. Incorporates lab sessions on scanning electron microscopy and microanalysis.

CHME 5137. Computational Modeling in Chemical Engineering. 4 Hours. Builds on chemical engineering fundamentals to introduce computer programming to allow simulation of physical, chemical, and biological systems. Covers numerical experiments (e.g., Monte Carlo, global sensitivity analysis) to analyze the significance of parameters and model assumptions. Offers students an opportunity to work on a research or design project throughout the course.

CHME 5160. Drug Delivery: Engineering Analysis. 4 Hours. Focuses on engineering analysis of drug delivery systems, demonstrating the application of classic engineering principles to a nontraditional field for chemical engineers. Presents quantitative analysis of transport of a drug through the body and its control by physical and chemical drug and delivery device properties. Emphasizes the influence of biological tissue composition and structure on these processes.

CHME 5185. Design of Experiments and Ethical Research (DOEER). 4 Hours. Designed to provide a comprehensive approach to introducing interdisciplinary biochemical engineering research and design of experiments. Through immersion in a collaborative classroom, offers students an opportunity to develop the thought processes, skills, and strategies required for originating and performing high-impact research that broadens scientific knowledge. Emphasizes design of experiments, statistics, and considerations in conducting ethical research. Topics include case studies in conflict of interest, bioethics, laboratory safety, scientific misconduct, authorship and publication, literature and peer review, data visualization and integrity, statistical analysis, and contemporary issues. Students complete online and training modules in laboratory safety and apply their knowledge as they study applications for experiments, including power analysis and rigor, to design scientific aims with peer review. Meets NIH for RCR.

CHME 5510. Fundamentals in Process Safety Engineering. 4 Hours. Introduces the basic concepts in process safety engineering as applied to the process industries as well as various terms and lexicon. Reviews the fundamentals involved in the prediction of scenarios and covers the assumptions involved as well as the range of these predictions. Emphasizes toxicology, industrial hygiene, sources models, toxic releases, and dispersion models, as well as fire and explosion prevention.

CHME 5520. Process Safety Engineering—Chemical Reactivity, Reliefs, and Hazards Analysis. 4 Hours. Reviews chemical reactivity hazards. Introduces relief methods and sizing estimation to prevent overpressurization vessel damage. Covers methods of hazards identification and risk assessment. Offers students an opportunity to obtain the ability to lead hazards analysis in any organization at any level.

CHME 5530. Process Safety Engineering. 4 Hours. Includes case studies in conflict of interest, bioethics, laboratory safety, scientific misconduct, authorship and publication, literature and peer review, data visualization and integrity, statistical analysis, and contemporary issues. Students complete online and training modules in laboratory safety and apply their knowledge as they study applications for experiments, including power analysis and rigor, to design scientific aims with peer review. Meets NIH for RCR.

CHME 5540. Environmental Engineering. 4 Hours. Introduces the basics of environmental engineering as applied to the process industries as well as various terms and lexicon. Reviews the fundamentals involved in the prediction of scenarios and covers the assumptions involved as well as the range of these predictions. Emphasizes toxicology, industrial hygiene, sources models, toxic releases, and dispersion models, as well as fire and explosion prevention.

CHME 5550. Process Safety Engineering—Chemical Reactivity, Reliefs, and Hazards Analysis. 4 Hours. Reviews chemical reactivity hazards. Introduces relief methods and sizing estimation to prevent overpressurization vessel damage. Covers methods of hazards identification and risk assessment. Offers students an opportunity to obtain the ability to lead hazards analysis in any organization at any level.

CHME 5560. Process Safety Engineering. 4 Hours. Includes case studies in conflict of interest, bioethics, laboratory safety, scientific misconduct, authorship and publication, literature and peer review, data visualization and integrity, statistical analysis, and contemporary issues. Students complete online and training modules in laboratory safety and apply their knowledge as they study applications for experiments, including power analysis and rigor, to design scientific aims with peer review. Meets NIH for RCR.

CHME 5570. Process Safety Engineering. 4 Hours. Introduces the basics of environmental engineering as applied to the process industries as well as various terms and lexicon. Reviews the fundamentals involved in the prediction of scenarios and covers the assumptions involved as well as the range of these predictions. Emphasizes toxicology, industrial hygiene, sources models, toxic releases, and dispersion models, as well as fire and explosion prevention.

CHME 5621. Environmental Engineering. 4 Hours. Introduces fundamental concepts of environmental engineering as applied to the process industries as well as various terms and lexicon. Reviews the fundamentals involved in the prediction of scenarios and covers the assumptions involved as well as the range of these predictions. Emphasizes toxicology, industrial hygiene, sources models, toxic releases, and dispersion models, as well as fire and explosion prevention.

CHME 5630. Biomedical Engineering. 4 Hours. Focuses on topics relevant to the design of cell culture processes for the production of pharmaceuticals. Topics include an overview of prokaryotic vs. eukaryotic cells; enzyme kinetics; overview of cellular processes (DNA replication, transcription, translation, primary metabolism, and regulation of protein synthesis at the transcriptional, posttranslational, and metabolic levels); overview of genetic engineering methods (for bacteria, mammalian, and plant cells); kinetics of cell growth (growth models, growth kinetic parameters); kinetics of product formation; bioreactor design and optimum operating conditions; scale-up; and overview of product recovery and purification methods.
CHME 5631. Biomaterials Principles and Applications. 4 Hours.
Offers a broad overview of the field of biomaterials (materials used in medical devices that interact with living tissues). Begins with introductory lectures on biomaterials and their translation from the laboratory to the medical marketplace and progresses to discussions of important biomaterials terminology and concepts. Basic materials science lectures then emphasize material structure-property-function-testing relationships. Concludes with introductions to topics in the field such as biomaterials-tissue interactions, tissue engineering, regulatory requirements, etc. Considers principles of device design as related to the selection and application of biomaterials throughout this course.

CHME 5632. Advanced Topics in Biomaterials. 4 Hours.
Addresses several important topics in biomaterials, specifically, materials used in medical devices that communicate with living tissues. Topics that may be addressed include biomaterials: past, present, and future; tissue engineering: scope, status, promise, challenges; biomaterials-tissue interactions; regulated medical device design, fabrication, and testing; strategies for translating medical products from concept to the marketplace; and medical device disasters. Some topics are covered in more depth than others depending on their value and interest to the students.

CHME 5683. Introduction to Polymer Science. 4 Hours.
Introduces basic concepts of polymers and polymer properties. Covers macromolecular structure from both theoretical and experimental viewpoints, polymerization processes and kinetics, polymer/solvent thermodynamics, crosslinking and network dynamics, thermal and phase behavior of polymers, viscoelasticity and mechanical behavior, diffusion in polymers, and selected advanced topics. Designed for both undergraduate and graduate students. No prior knowledge of polymers is required.

CHME 5699. Special Topics in Chemical Engineering. 4 Hours.
Focuses on topics related to chemical engineering to be selected by the instructor. May be repeated up to two times.

CHME 5984. Research. 1-4 Hours.
Offers an opportunity to conduct research under faculty supervision. May be repeated without limit.