
Computer Science 1

Computer Science
Computer science involves the application of theoretical concepts in
the context of software development to the solution of problems that
arise in almost every human endeavor. Computer science as a discipline
draws its inspiration from mathematics, logic, science, and engineering.
From these roots, computer science has fashioned paradigms for
program structures, algorithms, data representations, efficient use of
computational resources, robustness and security, and communication
within computers and across networks. The ability to frame problems,
select computational models, design program structures, and develop
efficient algorithms is as important in computer science as software
implementation skill. Computer science is concerned with bringing
together all of the intellectual resources needed to enable the rapid
and effective development of software to meet the needs of business,
research, and end users.

The goal of the undergraduate program in computer science is to
teach students the conceptual and practical skills that will enable
them to contribute to the development of computational principles
and to play a productive role in the software community. To that end,
the undergraduate program focuses on the fundamentals of program
design including object-oriented design, software development, computer
organization, systems and networks, theory of computation, principles of
languages, and advanced algorithms and data. The program also offers
a variety of electives at the upper undergraduate and beginning graduate
levels ranging from more theoretical courses to those that focus on
important applications.

The Bachelor of Science in Computer Science with Concentration in
Cyber Operations is one of the initial four programs selected in 2012 by
the National Security Agency as a National Center of Academic
Excellence in Cyber Operations Program.

Programs
Bachelor of Science in Computer Science (BSCS)

• Computer Science (http://catalog.northeastern.edu/undergraduate/
computer-information-science/computer-science/bscs)

• Computer Science with Concentration in Cyber Operations (http://
catalog.northeastern.edu/undergraduate/computer-information-
science/computer-science/concentration-cyber-operations-bscs)

Bachelor of Arts in Computer Science (BACS)
• Computer Science (http://catalog.northeastern.edu/undergraduate/

computer-information-science/computer-science/bacs)

Bachelor of Science (BS)
• Cybersecurity (http://catalog.northeastern.edu/undergraduate/

computer-information-science/computer-science/cyber-security-bs)

Minor
• Computer Science (http://catalog.northeastern.edu/undergraduate/

computer-information-science/computer-science/minor)

Accelerated Programs
See Accelerated Bachelor/Graduate Degree Programs (http://
catalog.northeastern.edu/undergraduate/computer-information-science/
accelerated-bachelor-graduate-degree-programs/#programstext)

Courses
Computer Science Courses
CS 1100. Computer Science and Its Applications. 4 Hours.
Introduces students to the field of computer science and the patterns
of thinking that enable them to become intelligent users of software
tools in a problem-solving setting. Examines several important software
applications so that students may develop the skills necessary to use
computers effectively in their own disciplines.

CS 1200. Leadership Skill Development. 1 Hour.
Focuses on leadership skill development to support student success
in the College of Computer and Information Science and Northeastern
University. Topics include ethics and accountability, leadership and
communication, career development, and student services and
resources. The course serves as a shared experience for students to
make connections with faculty, staff, and students within CCIS and the
Northeastern community.

CS 1210. Professional Development for CCIS Co-op. 1 Hour.
Continues the preparation of students for careers in the computing
and information fields by discussing co-op and co-op processes. Offers
students an opportunity to prepare a professional résumé; practice
proper interviewing techniques; explore current job opportunities; learn
how to engage in the job and referral process; and to understand co-op
policies, procedures, and expectations. Discusses professional behavior
and ethical issues in the workplace.

CS 1800. Discrete Structures. 4 Hours.
Introduces the mathematical structures and methods that form the
foundation of computer science. Studies structures such as sets, tuples,
sequences, lists, trees, and graphs. Discusses functions, relations,
ordering, and equivalence relations. Examines inductive and recursive
definitions of structures and functions. Discusses principles of proof
such as truth tables, inductive proof, and basic logic. Also covers the
counting techniques and arguments needed to estimate the size of sets,
the growth of functions, and the space-time complexity of algorithms.

CS 1801. Recitation for CS 1800. 0 Hours.
Accompanies CS 1800. Provides students with additional opportunities to
ask questions and to see sample problems solved in detail.

CS 1802. Seminar for CS 1800. 1 Hour.
Accompanies CS 1800. Illustrates topics from the lecture course through
discussions, quizzes, and homework assignments.

CS 1990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions.
May be repeated without limit.

CS 2500. Fundamentals of Computer Science 1. 4 Hours.
Introduces the fundamental ideas of computing and the principles of
programming. Discusses a systematic approach to word problems,
including analytic reading, synthesis, goal setting, planning, plan
execution, and testing. Presents several models of computing, starting
from nothing more than expression evaluation in the spirit of high school
algebra. No prior programming experience is assumed; therefore, suitable
for freshman students, majors and nonmajors alike who wish to explore
the intellectual ideas in the discipline.

CS 2501. Lab for CS 2500. 1 Hour.
Accompanies CS 2500. Covers topics from the course through various
experiments.

2 Computer Science

CS 2510. Fundamentals of Computer Science 2. 4 Hours.
Continues CS 2500. Examines object-oriented programming and
associated algorithms using more complex data structures as the
focus. Discusses nested structures and nonlinear structures including
hash tables, trees, and graphs. Emphasizes abstraction, encapsulation,
inheritance, polymorphism, recursion, and object-oriented design
patterns. Applies these ideas to sample applications that illustrate the
breadth of computer science.

CS 2511. Lab for CS 2510. 1 Hour.
Accompanies CS 2510. Covers topics from the course through various
experiments.

CS 2550. Foundations of Cybersecurity. 4 Hours.
Presents an overview of basic principles and security concepts related
to information systems, including workstation security, system security,
and communications security. Discusses legal, ethical, and human
factors and professional issues associated with cybersecurity, including
the ability to differentiate between laws and ethics. Offers students
an opportunity to use a substantial variety of existing software tools
to probe both computer systems and networks in order to learn how
these systems function, how data moves within these systems, and how
these systems might be vulnerable. Covers security methods, controls,
procedures, economics of cybercrime, criminal procedure, and forensics.

CS 2800. Logic and Computation. 4 Hours.
Introduces formal logic and its connections to computer and information
science. Offers an opportunity to learn to translate statements about
the behavior of computer programs into logical claims and to gain the
ability to prove such assertions both by hand and using automated tools.
Considers approaches to proving termination, correctness, and safety
for programs. Discusses notations used in logic, propositional and first
order logic, logical inference, mathematical induction, and structural
induction. Introduces the use of logic for modeling the range of artifacts
and phenomena that arise in computer and information science.

CS 2801. Lab for CS 2800. 1 Hour.
Accompanies CS 2800. Covers topics from the course through various
experiments.

CS 2990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions.
May be repeated without limit.

CS 3000. Algorithms and Data. 4 Hours.
Introduces the basic principles and techniques for the design, analysis,
and implementation of efficient algorithms and data representations.
Discusses asymptotic analysis and formal methods for establishing the
correctness of algorithms. Considers divide-and-conquer algorithms,
graph traversal algorithms, and optimization techniques. Introduces
information theory and covers the fundamental structures for
representing data. Examines flat and hierarchical representations,
dynamic data representations, and data compression. Concludes with a
discussion of the relationship of the topics in this course to complexity
theory and the notion of the hardness of problems.

CS 3200. Database Design. 4 Hours.
Studies the design of a database for use in a relational database
management system. The entity-relationship model and normalization
are used in problems. Relational algebra and then the SQL (structured
query language) are presented. Advanced topics include triggers, stored
procedures, indexing, elementary query optimization, and fundamentals
of concurrency and recovery. Students implement a database schema
and short application programs on one or more commercial relational
database management systems.

CS 3500. Object-Oriented Design. 4 Hours.
Presents a comparative approach to object-oriented programming
and design. Discusses the concepts of object, class, meta-class,
message, method, inheritance, and genericity. Reviews forms of
polymorphism in object-oriented languages. Contrasts the use of
inheritance and composition as dual techniques for software reuse:
forwarding vs. delegation and subclassing vs. subtyping. Fosters a
deeper understanding of the principles of object-oriented programming
and design including software components, object-oriented design
patterns, and the use of graphical design notations such as UML (unified
modeling language). Basic concepts in object-oriented design are
illustrated with case studies in application frameworks and by writing
programs in one or more object-oriented languages.

CS 3520. Programming in C++. 4 Hours.
Examines how to program in C++ in a robust and safe manner. Reviews
basics, including scoping, typing, and primitive data structures.
Discusses data types (primitive, array, structure, class, string);
addressing/parameter mechanisms (value, pointer, reference); stacks;
queues; linked lists; binary trees; hash tables; and the design of classes
and class inheritance, emphasizing single inheritance. Considers the
instantiation of objects, the trade-offs of stack vs. heap allocation, and
the design of constructors and destructors. Emphasizes the need for
a strategy for dynamic memory management. Addresses function and
operator overloading; templates, the Standard Template Library (STL),
and the STL components (containers, generic algorithms, iterators,
adaptors, allocators, function objects); streams; exception handling; and
system calls for processes and threads.

CS 3540. Game Programming. 4 Hours.
Introduces the different subsystems used to create a 3D game, including
rendering, animation, collision, physics, audio, trigger systems, game
logic, behavior trees, and simple artificial intelligence. Offers students
an opportunity to learn the inner workings of game engines and how to
use multiple libraries such as physics and graphics libraries to develop
a game. Discusses graphics pipeline, scene graph, level design, behavior
scripting, object-oriented game design, world editors, and game scripting
languages.

CS 3620. Building Extensible Systems. 4 Hours.
Deals with the design of extensible software systems, which enable
clients to add functionality both statically as well as dynamically.
Examples of such systems are operating systems, game servers, and
Web browsers. Describes the classic systems built on C-like languages
with unsafe, manual memory control and the more recent systems built
on Java-like languages with safe, automated memory management.
Introduces the Rust programming language, which combines the
efficiency of C with safe manual memory control via type specifications
and compiler constraints. Offers students an opportunity to build
systems using all three settings but focuses on the Rust approach.
Students also have an opportunity to evaluate their work via essays and
memos.

CS 3650. Computer Systems. 4 Hours.
Introduces the basic design of computing systems, computer operating
systems, and assembly language using a RISC architecture. Describes
caches and virtual memory. Covers the interface between assembly
language and high-level languages, including call frames and pointers.
Covers the use of system calls and systems programming to show
the interaction with the operating system. Covers the basic structures
of an operating system, including application interfaces, processes,
threads, synchronization, interprocess communication, deadlock, memory
management, file systems, and input/output control.

Computer Science 3

CS 3700. Networks and Distributed Systems. 4 Hours.
Introduces the fundamentals of computer networks, including network
architectures, network topologies, network protocols, layering concepts
(for example, ISO/OSI, TCP/IP reference models), communication
paradigms (point-to-point vs. multicast/broadcast, connectionless
vs. connection oriented), and networking APIs (sockets). Also covers
the construction of distributed programs, with an emphasis on high-
level protocols and distributed state sharing. Topics include design
patterns, transactions, performance trade-offs, security implications, and
reliability. Uses examples from real networks (TCP/IP, Ethernet, 802.11)
and distributed systems (Web, BitTorrent, DNS) to reinforce concepts.

CS 3740. Systems Security. 4 Hours.
Introduces the fundamental principles of designing and implementing
secure programs and systems. Presents and analyzes prevalent classes
of attacks against systems. Discusses techniques for identifying the
presence of vulnerabilities in system design and implementation,
preventing the introduction of or successful completion of attacks,
limiting the damage incurred by attacks, and strategies for recovering
from system compromises. Offers opportunities for hands-on practice
of real-world attack and defense in several domains, including systems
administration, the Web, and mobile devices. Presents the ethical
considerations of security research and practice.

CS 3800. Theory of Computation. 4 Hours.
Introduces the theory behind computers and computing aimed at
answering the question, “What are the capabilities and limitations of
computers?” Covers automata theory, computability, and complexity. The
automata theory portion includes finite automata, regular expressions,
nondeterminism, nonregular languages, context-free languages,
pushdown automata, and noncontext-free languages. The computability
portion includes Turing machines, the Church-Turing thesis, decidable
languages, and the Halting theorem. The complexity portion includes big-
O and small-o notation, the classes P and NP, the P vs. NP question, and
NP-completeness.

CS 3950. Introduction to Computer Science Research. 2 Hours.
Introduces students to research in the fields of computer science,
information science, data science, and cybersecurity. Explores how
the scientific method is applied to these fields and covers the breadth
of subareas of specialty that exist. Offers students an opportunity to
practice how to locate and read scientific literature in different subareas.
Also offers students an overview of graduate education in these fields.

CS 3990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions.
May be repeated without limit.

CS 4000. Senior Seminar. 1 Hour.
Requires students to give a twenty- to thirty-minute formal presentation
on a topic of their choice in computer science. Prepares students for this
talk by discussing methods of oral presentation, how to present technical
material, how to choose what topics to present, overall organization of a
talk, and use of presentation software and other visual aids.

CS 4100. Artificial Intelligence. 4 Hours.
Introduces the fundamental problems, theories, and algorithms of
the artificial intelligence field. Includes heuristic search; knowledge
representation using predicate calculus; automated deduction and
its applications; planning; and machine learning. Additional topics
include game playing; uncertain reasoning and expert systems; natural
language processing; logic for common-sense reasoning; ontologies; and
multiagent systems.

CS 4120. Natural Language Processing. 4 Hours.
Introduces the computational modeling of human language; the ongoing
effort to create computer programs that can communicate with people in
natural language; and current applications of the natural language field,
such as automated document classification, intelligent query processing,
and information extraction. Topics include computational models of
grammar and automatic parsing, statistical language models and the
analysis of large text corpora, natural language semantics and programs
that understand language, models of discourse structure, and language
use by intelligent agents. Course work includes formal and mathematical
analysis of language models and implementation of working programs
that analyze and interpret natural language text. Knowledge of statistics
is helpful.

CS 4150. Game Artificial Intelligence. 4 Hours.
Offers an overview of classical and modern approaches to artificial
intelligence in digital games. Focuses on the creation of believable
agents and environments with the goal of providing a fun and engaging
experience to a player. Covers player modeling, procedural content
generation, behavior trees, interactive narrative, decision-making
systems, cognitive modeling, and path planning. Explores different
approaches for behavior generation, including learning and rule-based
systems. Requires students to complete several individual assignments
in these areas to apply the concepts covered in class. Students choose
a group final project to explore one aspect of artificial intelligence for
games in further depth. Offers students an opportunity to learn team
management and communication. Students who do not meet course
prerequisites may seek permission of instructor.

CS 4170. The Law, Ethics, and Policy of Data and Digital Technologies. 4
Hours.
Describes the legal and ethical issues associated with collection, use,
disclosure, and protection of digital information. Emphasizes legal
infrastructure relating to privacy, data ethics, data security, hacking,
automation, and intellectual property. Articulates the basic set of rules
and rights that are relevant to data practices and protection, evaluates
how these rules apply in context, and critically analyzes their efficacy and
social impact.

CS 4240. Large-Scale Parallel Data Processing. 4 Hours.
Covers techniques for managing and analyzing very large data sets, with
an emphasis on approaches that scale out effectively as more compute
nodes are added. Introduces principles of distributed data management
and strategies for problem-driven data partitioning through a selection
of design patterns from various application domains, including graph
analysis, databases, text processing, and data mining. Offers students
an opportunity to obtain hands-on programming experience with modern
big-data processing technology such as MapReduce, Spark, HBase,
and cloud computing (this selection is subject to change as technology
evolves).

CS 4300. Computer Graphics. 4 Hours.
Charts a path through every major aspect of computer graphics with
varying degrees of emphasis. Discusses hardware issues: size and speed;
lines, polygons, and regions; modeling, or objects and their relations;
viewing, or what can be seen (visibility and perspective); rendering, or
how it looks (properties of surfaces, light, and color); transformations,
or moving, placing, distorting, and animating and interaction, or drawing,
selecting, and transforming.

CS 4400. Programming Languages. 4 Hours.
Introduces a systematic approach to understanding the behavior of
programming languages. Covers interpreters; static and dynamic
scope; environments; binding and assignment; functions and recursion;
parameter-passing and method dispatch; objects, classes, inheritance,
and polymorphism; type rules and type checking; and concurrency.

4 Computer Science

CS 4410. Compilers. 4 Hours.
Studies the construction of compilers and integrates material from
earlier courses on programming languages, automata theory, computer
architecture, and software design. Examines syntax trees; static
semantics; type checking; typical machine architectures and their
software structures; code generation; lexical analysis; and parsing
techniques. Uses a hands-on approach with a substantial term project.

CS 4500. Software Development. 4 Hours.
Considers software development as a systematic process involving
specification, design, documentation, implementation, testing, and
maintenance. Examines software process models; methods for software
specification; modularity, abstraction, and software reuse; and issues of
software quality. Students, possibly working in groups, design, document,
implement, test, and modify software projects.

CS 4501. Recitation for CS 4500. 0 Hours.
Accompanies CS 4500. Provides students with additional opportunities to
ask questions and engage with course material.

CS 4520. Mobile Application Development. 4 Hours.
Focuses on mobile application development on a mobile phone or related
platform. Discusses memory management; user interface building,
including both MVC principles and specific tools; touch events; data
handling, including core data, SQL, XML, and JSON; network techniques
and URL loading; and, finally, specifics such as GPS and motion sensing
that may be dependent on the particular mobile platform. Students are
expected to work on a project that produces a professional-quality mobile
application. The instructor chooses a modern mobile platform to be used
in the course.

CS 4550. Web Development. 4 Hours.
Discusses Web development for sites that are dynamic, data driven, and
interactive. Focuses on the software development issues of integrating
multiple languages, assorted data technologies, and Web interaction.
Considers ASP.NET, C#, HTTP, HTML, CSS, XML, XSLT, JavaScript,
AJAX, RSS/Atom, SQL, and Web services. Requires each student to
deploy individually designed Web experiments that illustrate the Web
technologies and at least one major integrative Web site project.
Students may work as a team with the permission of the instructor.
Each student or team must also create extensive documentation of their
goals, plans, design decisions, accomplishments, and user guidelines.
All source files must be open and be automatically served by a sources
server.

CS 4610. Robotic Science and Systems. 4 Hours.
Introduces autonomous mobile robots, with a focus on algorithms and
software development, including closed-loop control, robot software
architecture, wheeled locomotion and navigation, tactile and basic
visual sensing, obstacle detection and avoidance, and grasping and
manipulation of objects. Offers students an opportunity to progressively
construct mobile robots from a predesigned electromechanical kit.
The robots are controlled wirelessly by software of the students’ own
design, built within a provided robotics software framework. The course
culminates in a grand challenge competition using all features of the
robots. .

CS 4700. Network Fundamentals. 4 Hours.
Introduces the fundamental concepts of network protocols and network
architectures. Presents the different harmonizing functions needed
for the communication and effective operation of computer networks.
Provides in-depth coverage of data link control, medium access control,
routing, end-to-end transport protocols, congestion and flow control,
multicasting, naming, auto configuration, quality of service, and network
management. Studies the abstract mechanisms and algorithms as
implemented in real-world Internet protocols. Also covers the most
common application protocols (e-mail, Web, and ftp).

CS 4710. Mobile and Wireless Systems. 4 Hours.
Covers both theoretical foundations of wireless/mobile networking
and practical aspects of wireless/mobile systems, including current
standards, mobile development platforms, and emerging technologies.
Incorporates a strong practical component; requires students to work
in teams on several practical assignments (e.g., based on Wi-Fi sensing,
mobile applications, Internet-of-Things devices, and software-defined
radio applications) and a final project. The final project integrates
knowledge about several wireless communication technologies and
mechanisms.

CS 4740. Network Security. 4 Hours.
Studies topics related to Internet architecture and cryptographic
schemes in the context of security. Provides advanced coverage of
the major Internet protocols including IP and DNS. Examines denial of
service, viruses, and worms, and discusses techniques for protection.
Covers cryptographic paradigms and algorithms such as RSA and Diffie-
Hellman in sufficient mathematical detail. The advanced topics address
the design and implementation of authentication protocols and existing
standardized security protocols. Explores the security of commonly used
applications like the Web and e-mail.

CS 4770. Cryptography. 4 Hours.
Studies the design of cryptographic schemes that enable secure
communication and computation. Emphasizes cryptography as a
mathematically rigorous discipline with precise definitions, theorems,
and proofs and highlights deep connections to information theory,
computational complexity, and number theory. Topics include
pseudorandomness; symmetric-key cryptosystems and block ciphers
such as AES; hash functions; public-key cryptosystems, including ones
based on factoring and discrete logarithms; signature schemes; secure
multiparty computation and applications such as auctions and voting;
and zero-knowledge proofs.

CS 4820. Computer-Aided Reasoning. 4 Hours.
Covers fundamental concepts, techniques, and algorithms in computer-
aided reasoning, including propositional logic, variants of the DPLL
algorithm for satisfiability checking, first-order logic, unification,
tableaux, resolution, Horn clauses, congruence closure, rewriting,
Knuth-Bendix completion, decision procedures, Satisfiability Modulo
Theories, recursion, induction, termination, Presburger arithmetic,
quantifier elimination, and interactive theorem proving. Offers students an
opportunity to develop and implement a reasoning engine in a sequence
of projects over the course of the semester. Also covers how to formalize
and reason about computational systems using a modern interactive
theorem prover.

CS 4850. Building Game Engines. 4 Hours.
Discusses the components of game engines and strategies for their
software implementation. Includes graphics management algorithms
(animation, scene graph, level of detail); basic artificial intelligence
algorithms (search, decision making, sensing); and related algorithmic
issues (networking, threading, input processing). Explores the use of
data-driven software design. Offers students an opportunity to use a
rendering engine and to build and integrate several software components
to create a complete game engine. Requires students to work on several
individual assignments to apply the algorithms and then develop a
project in a team. Offers students an opportunity to learn team/project
management; work division; team communication; and the software
development cycle of implementation, testing, critique, and further
iteration. Students who do not meet course prerequisites may seek
permission of instructor.

Computer Science 5

CS 4930. Cybersecurity Capstone. 4 Hours.
Provides the culmination of the learned principles and methodologies
for identifying and addressing cybersecurity issues in organizations.
Offers students an opportunity to work in small groups to identify and
scope a current cybersecurity problem/challenge. Requires students to
submit a written proposal about the project, complete with motivation,
literature research, and reasons for the study; create a work plan to
develop a solution to include the development and identification of the
data necessary to properly solve the problem/challenge; and create a
final report.

CS 4940. Research Projects on National Security. 4 Hours.
Engages students in national cybersecurity/information systems security
problems. Offers students an opportunity to learn how to apply research
techniques, think clearly about these issues, formulate and analyze
potential solutions, and communicate their results. Working in small
groups under the mentorship of external mentors from government and
industry, each student has an opportunity to formulate, carry out, and
present original research on current cybersecurity/information assurance
problems of interest to the nation. As part of this research, students are
required to submit a written proposal about the project, complete with
motivation, literature research, and reasons for the study; create a work
plan for the research problem; and create a final report.

CS 4950. Computer Science Research Seminar. 1 Hour.
Offers students an in-depth look at research in a particular subarea of
computer science, information science, data science, or cybersecurity.
The particular subarea varies from semester to semester. Exposes
students to current research topics, often via guest faculty members.
Offers students an opportunity to practice reading and discussing
scientific literature, presenting scientific work, and distilling the key ideas
and contributions of papers through required weekly paper summaries.

CS 4990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions.
May be repeated without limit.

CS 4991. Research. 4,8 Hours.
Offers an opportunity to conduct research under faculty supervision. May
be repeated up to three times.

CS 4992. Directed Study. 1-6 Hours.
Focuses on student examining standard computer science material
in fresh ways or new computer science material that is not covered in
formal courses. May be repeated up to three times.

CS 4993. Independent Study. 1-6 Hours.
Offers independent work under the direction of members of the
department on a chosen topic. Course content depends on instructor.
May be repeated up to three times.

CS 4994. Internship. 4 Hours.
Offers students an opportunity for internship work. May be repeated
without limit.

CS 5001. Intensive Foundations of Computer Science. 4 Hours.
Introduces the fundamental ideas of computing and programming
principles. Discusses a systematic approach to word problems, including
analytic reading, synthesis, goal setting, planning, plan execution, and
testing. Presents several models of computing, beginning with functional
program design. The latter part of the course consists of two parts: a
task organization (ranging from the description of data to the creation
of a test suite) and a data-oriented approach to the organization of
programs (ranging from atomic data to self-referential data definitions
and functions as data). Offers students an opportunity to practice pair
programming and public code review techniques, as found in industry
today. No prior programming experience is assumed; therefore, suitable
for students with little or no computer science background.

CS 5002. Discrete and Data Structures. 4 Hours.
Introduces the mathematical structures and methods that form the
foundation of computer science. Studies structures such as sets, tuples,
sequences, lists, trees, and graphs. Discusses functions, relations,
ordering, and equivalence relations. Examines inductive and recursive
definitions of structures and functions. Covers principles of proof such as
truth tables, inductive proof, and basic logic and the counting techniques
and arguments needed to estimate the size of sets, the growth of
functions, and the space-time complexity of algorithms. Also, discusses
data structures such as arrays, stacks, queues, lists, and the algorithms
that manipulate them.

CS 5003. Recitation for CS 5001. 0 Hours.
Provides a small-group discussion format to cover material in CS 5001.
Coreq CS 5001.

CS 5004. Object-Oriented Design. 4 Hours.
Presents a comparative approach to object-oriented programming and
design. Discusses the concepts of object, class, metaclass, message,
method, inheritance, and genericity. Reviews forms of polymorphism
in object-oriented languages. Contrasts the use of inheritance and
composition as dual techniques for software reuse—forwarding vs.
delegation and subclassing vs. subtyping. Offers students an opportunity
to obtain a deeper understanding of the principles of object-oriented
programming and design, including software components, object-
oriented design patterns, and the use of graphical design notations such
as UML (unified modeling language). Illustrates basic concepts in object-
oriented design with case studies in application frameworks and by
writing programs in Java.

CS 5005. Recitation for CS 5004. 0 Hours.
Provides small-group discussion format to cover material in CS 5004.

CS 5006. Algorithms. 2 Hours.
Introduces the basic principles and techniques for the design and
implementation of efficient algorithms and data representations.
Considers divide-and-conquer algorithms, graph traversal algorithms,
linear programming, and optimization techniques. Covers the
fundamental structures for representing data, such as hash tables, trees,
and graphs.

CS 5007. Computer Systems. 2 Hours.
Introduces the basic design of computing systems, computer operating
systems, and assembly language using a RISC architecture. Describes
caches and virtual memory. Covers the interface between assembly
language and high-level languages, including call frames and pointers;
the use of system calls and systems programming to show the
interaction with the operating system; and the basic structures of an
operating system, including application interfaces, processes, threads,
synchronization, interprocess communication, deadlock, memory
management, file systems, and input/output control.

CS 5010. Programming Design Paradigm. 4 Hours.
Introduces modern program design paradigms. Starts with functional
program design, introducing the notion of a design recipe. The latter
consists of two parts: a task organization (ranging from the description
of data to the creation of a test suite) and a data-oriented approach to
the organization of programs (ranging from atomic data to self-referential
data definitions and functions as data). The course then progresses to
object-oriented design, explaining how it generalizes and contrasts with
functional design. In addition to studying program design, students also
have an opportunity to practice pair-programming and public code review
techniques, as found in industry today.

CS 5011. Recitation for CS 5010. 0 Hours.
Provides small-group discussion format to cover material in CS 5010.

6 Computer Science

CS 5082. Privacy and Security of User Accounts: Patterns and Best
Practices. 2 Hours.
Introduces approaches for authentication (ensuring you know who
someone is) and authorization (ensuring they have access to a given
resource or service). Studies how to identify relevant issues from the
consumer or user side of account creation and management; identify
expectations and liabilities for the developer or company providing
a user-based account; share existing software design patterns and
technologies to help you implement secure user accounts, including
OAuth and anonymous accounts; and discusses UX design issues around
user account creation and maintenance. Relevant for anyone who wants
to create an application or service with a user registration and login page.
Covers why you don’t want to build this functionality yourself and how
you can use existing tools and technologies that shield you from liability
for storing user data.

CS 5083. Software Project Management with Scrum. 2 Hours.
Offers students an opportunity to obtain an understanding of the Scrum
methodology for managing software projects using lean principles.
Explains the Scrum framework as well as key ceremonies and roles.
Shows which aspects of Scrum are required and how they manage
project risk. .

CS 5100. Foundations of Artificial Intelligence. 4 Hours.
Introduces the fundamental problems, theories, and algorithms of the
artificial intelligence field. Topics include heuristic search and game trees,
knowledge representation using predicate calculus, automated deduction
and its applications, problem solving and planning, and introduction to
machine learning. Required course work includes the creation of working
programs that solve problems, reason logically, and/or improve their
own performance using techniques presented in the course. Requires
experience in Java programming.

CS 5150. Game Artificial Intelligence. 4 Hours.
Offers an overview of classical and modern approaches to artificial
intelligence in digital games. Focuses on the creation of believable
agents and environments with the goal of providing a fun and engaging
experience to a player. Covers player modeling, procedural content
generation, behavior trees, interactive narrative, decision-making
systems, cognitive modeling, and path planning. Explores different
approaches for behavior generation, including learning and rule-based
systems. Requires students to complete several individual assignments
in these areas to apply the concepts covered in class. Students choose
a group final project, which requires a report, to explore one aspect of
artificial intelligence for games in further depth. Offers students an
opportunity to learn team management and communication. Requires
knowledge of algorithms and experience with object-oriented design or
functional programming.

CS 5200. Database Management Systems. 4 Hours.
Introduces relational database management systems as a class of
software systems. Prepares students to be sophisticated users of
database management systems. Covers design theory, query language,
and performance/tuning issues. Topics include relational algebra,
SQL, stored procedures, user-defined functions, cursors, embedded
SQL programs, client-server interfaces, entity-relationship diagrams,
normalization, B-trees, concurrency, transactions, database security,
constraints, object-relational DBMSs, and specialized engines such as
spatial, text, XML conversion, and time series. Includes exercises using a
commercial relational or object-relational database management system.

CS 5310. Computer Graphics. 4 Hours.
Introduces the fundamentals of two-dimensional and three-dimensional
computer graphics, with an emphasis on approaches for obtaining
realistic images. Covers two-dimensional algorithms for drawing lines
and curves, anti-aliasing, filling, and clipping. Studies rendering of three-
dimensional scenes composed of spheres, polygons, quadric surfaces,
and bi-cubic surfaces using ray-tracing and radiosity. Includes techniques
for adding texture to surfaces using texture and bump maps, noise, and
turbulence. Requires knowledge of linear algebra.

CS 5330. Pattern Recognition and Computer Vision. 4 Hours.
Introduces fundamental techniques for low-level and high-level computer
vision. Examines image formation, early processing, boundary detection,
image segmentation, texture analysis, shape from shading, photometric
stereo, motion analysis via optic flow, object modeling, shape description,
and object recognition (classification). Discusses models of human
vision (gestalt effects, texture perception, subjective contours, visual
illusions, apparent motion, mental rotations, and cyclopean vision).
Requires knowledge of linear algebra.

CS 5335. Robotic Science and Systems. 4 Hours.
Introduces autonomous mobile robots with a focus on algorithms and
software development, including closed-loop control, robot software
architecture, wheeled locomotion and navigation, tactile and basic
visual sensing, obstacle detection and avoidance, and grasping and
manipulation of objects. Offers students an opportunity to progressively
construct mobile robots from a predesigned electromechanical kit. The
robots are controlled wirelessly by software of the students’ own design,
built within a provided robotics software framework. Culminates in a
project that connects the algorithms and hardware developed in the
course with a selected topic in the current robotics research literature.

CS 5340. Computer/Human Interaction. 4 Hours.
Covers the principles of human-computer interaction and the design
and evaluation of user interfaces. Topics include an overview of human
information processing subsystems (perception, memory, attention,
and problem solving); how the properties of these systems affect the
design of user interfaces; the principles, guidelines, and specification
languages for designing good user interfaces, with emphasis on tool kits
and libraries of standard graphical user interface objects; and a variety
of interface evaluation methodologies that can be used to measure the
usability of software. Other topics may include World Wide Web design
principles and tools, computer-supported cooperative work, multimodal
and “next generation” interfaces, speech and natural language interfaces,
and virtual reality interfaces. Course work includes both the creation and
implementation of original user interface designs, and the evaluation of
user interfaces created by others. Requires knowledge of C programming
language/UNIX. .

CS 5400. Principles of Programming Language. 4 Hours.
Studies the basic components of programming languages, specification
of syntax and semantics, and description and implementation of
programming language features. Discusses examples from a variety of
languages.

CS 5500. Managing Software Development. 4 Hours.
Covers software life cycle models (waterfall, spiral, and so forth), domain
engineering methods, requirements analysis methods (including formal
specifications), software design principles and methods, verification
and testing methods, resource and schedule estimation for individual
software engineers, component-based software development methods
and architecture, and languages for describing software processes.
Includes a project where some of the software engineering methods
(from domain modeling to testing) are applied in an example. Requires
admission to MS program or completion of all transition courses.

Computer Science 7

CS 5520. Mobile Application Development. 4 Hours.
Focuses on mobile application development on a mobile phone or related
platform. Discusses memory management; user interface building,
including both MVC principles and specific tools; touch events; data
handling, including core data, SQL, XML, and JSON; network techniques
and URL loading; and, finally, specifics such as GPS and motion sensing
that may be dependent on the particular mobile platform. Students are
expected to work on a project that produces a professional-quality mobile
application and to demonstrate the application that they have developed.
The instructor chooses a modern mobile platform to be used in the
course.

CS 5600. Computer Systems. 4 Hours.
Studies the structure, components, design, implementation, and internal
operation of computer systems, focusing mainly on the operating
system level. Reviews computer hardware and architecture including
the arithmetic and logic unit, and the control unit. Covers current
operating system components and construction techniques including the
memory and memory controller, I/O device management, device drivers,
memory management, file system structures, and the user interface.
Introduces distributed operating systems. Discusses issues arising
from concurrency and distribution, such as scheduling of concurrent
processes, interprocess communication and synchronization, resource
sharing and allocation, and deadlock management and resolution.
Includes examples from real operating systems. Exposes students to the
system concepts through programming exercises. Requires admission to
MS program or completion of all transition courses.

CS 5610. Web Development. 4 Hours.
Discusses Web development for sites that are dynamic, data driven, and
interactive. Focuses on the software development issues of integrating
multiple languages, assorted data technologies, and Web interaction.
Considers ASP.NET, C#, HTTP, HTML, CSS, XML, XSLT, JavaScript, AJAX,
RSS/Atom, SQL, and Web services. Each student must deploy individually
designed Web experiments that illustrate the Web technologies and at
least one major integrative Web site project. Students may work in teams
with the permission of the instructor. Each student or team must also
create extensive documentation of their goals, plans, design decisions,
accomplishments, and user guidelines. All source files must be open and
be automatically served by a sources server.

CS 5700. Fundamentals of Computer Networking. 4 Hours.
Studies network protocols, focusing on modeling and analysis, and
architectures. Introduces modeling concepts, emphasizing queuing
theory, including Little’s theorem, M/M/1, M/M/m, M/D/1, and M/G/1
queuing systems. Discusses performance evaluation of computer
networks including performance metrics, evaluation tools and
methodology, simulation techniques, and limitations. Presents the
different harmonizing functions needed for communication and efficient
operation of computer networks and discusses examples of Ethernet,
FDDI, and wireless networks. Covers link layer protocols including HDLC,
PPP, and SLIP; packet framing; spanning tree and learning bridges, error
detection techniques, and automatic repeat request algorithms; sliding
window and reliable/ordered services; and queuing disciplines including
FQ and WFQ. Introduces flow control schemes, such as window flow
control and leaky bucket rate control schemes, and discusses congestion
control and fairness. Requires knowledge of probability theory.

CS 5770. Software Vulnerabilities and Security. 4 Hours.
Seeks to help students to become aware of systems security issues and
to gain a basic understanding of security. Presents the principal software
and applications used in the Internet, discussing in detail the related
vulnerabilities and how they are exploited. Also discusses programming
vulnerabilities and how they are exploited. Examines protection and
detection techniques. Includes a number of practical lab assignments as
well as a discussion of current research in the field.

CS 5800. Algorithms. 4 Hours.
Presents the mathematical techniques used for the design and analysis
of computer algorithms. Focuses on algorithmic design paradigms and
techniques for analyzing the correctness, time, and space complexity of
algorithms. Topics may include asymptotic notation, recurrences, loop
invariants, Hoare triples, sorting and searching, advanced data structures,
lower bounds, hashing, greedy algorithms, dynamic programming, graph
algorithms, and NP-completeness.

CS 5850. Building Game Engines. 4 Hours.
Discusses the components of game engines and strategies for their
software implementation. Includes graphics management algorithms
(animation, scene graph, level of detail); basic artificial intelligence
algorithms (search, decision making, sensing); and related algorithmic
issues (networking, threading, input processing). Explores the use of
data-driven software design. Offers students an opportunity to use a
rendering engine and to build and integrate several software components
to create a complete game engine. Requires students to work on
individual assignments and then develop a project in a team, which
requires a report. Offers students an opportunity to learn team/project
management; work division; team communication; and the software
development cycle of implementation, testing, critique, and further
iteration. Requires knowledge of computer graphics, differential calculus,
operating systems concepts, and algorithms.

CS 5964. Experiential Project. 0 Hours.
Offers students an applied project setting in which to apply their
curricular learning. Working with a sponsor, students refine an applied
research topic, perform research, develop recommendations that are
shared with a partner sponsor, and create a plan for implementing their
recommendations. Seeks to benefit students with a curriculum that
supports the development of key business communication skills, project
and client management skills, and frameworks for business analysis.
Offers students an opportunity to learn from sponsor feedback, review
'lessons learned,' and incorporate suggestions from this review to improve
and further develop their career development and professional plan. May
be repeated up to three times.

CS 5976. Directed Study. 2-4 Hours.
Focuses on student examining standard computer science material
in fresh ways or new computer science material that is not covered in
formal courses. May be repeated up to three times.

