The multidisciplinary graduate engineering Master of Science (MS) programs integrate engineering solutions from the fields of technology and business by developing technical and engineering skills through advanced coursework and complex technical projects. Each program focuses on the application of knowledge and skills to business and industrial settings. The software, data, and network systems programs blend academic and corporate experience to enable students to enhance their professional capabilities, thereby facilitating career transformation. Given an applied focus, each program provides learning opportunities to develop the skills needed to create innovative, practical, and effective solutions that can be easily applied to current professional challenges.

The multidisciplinary graduate engineering programs are designed to prepare students for direct entry into the workforce. Students who are seeking preparation for entry into PhD programs should consider specific department MS programs in combination with the MS degree. For more information please refer to Graduate Certificate Programs.

Graduate Certificate Options
Students enrolled in a graduate degree program in the College of Engineering have the opportunity to pursue an engineering graduate certificate in addition to or in combination with the MS degree. For more information please refer to Graduate Certificate Programs.

GORDON INSTITUTE OF ENGINEERING LEADERSHIP OPTION
Students have the opportunity to pursue the Gordon Engineering Leadership Program in combination with the MS degree.

Programs
Master of Science in Computer Systems Engineering (MSCSE)
- Computer Systems Engineering with Concentration in Software Design Engineering (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/computer-systems-engineering-concentration-software-design-mscse/)

Master of Science in Information Systems (MSIS)
- Information Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/information-systems-msis/)

Master of Science (MS)
- Cyber-Physical Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/cyber-physical-systems-ms/)
- Data Architecture and Management (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/data-architecture-management-ms/)
- Software Engineering Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/software-engineering-systems-ms/)

- Telecommunication Networks (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/telecommunication-networks-ms/)

Graduate Certificates
- Blockchain and Smart Contract Engineering (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/blockchain-smart-contract-engineering-graduate-certificate/)
- Broadband Wireless Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/broadband-wireless-systems-graduate-certificate/)
- Computer Systems Engineering (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/computer-systems-engineering-graduate-certificate/)
- Engineering Leadership (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/engineering-leadership-graduate-certificate/)
- IP Telephony Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/ip-telephony-systems-graduate-certificate/)
- Software Engineering Systems (http://catalog.northeastern.edu/graduate/engineering/multidisciplinary/software-engineering-systems-graduate-certificate/)

Courses
Computer Systems Engineering Courses
Search CSYE Courses using FocusSearch (http://catalog.northeastern.edu/class-search/?subject=CSYE)

CSYE 6200. Concepts of Object-Oriented Design. 4 Hours.
Introduces object-oriented design and programming via the Java programming language; the use of inheritance, composition, and interface classes in software design; development of Java applets and applications; study of the Java class libraries, including the swing tool kit for building human computer interfaces, the network package for development of client-server systems, and the collections’ package for data structures and sorting algorithms. Requires a course project. Requires knowledge of C programming.

CSYE 6202. Concepts of Object-Oriented Design with C#. 4 Hours.
Introduces object-oriented design and programming via the C# (C-sharp) programming language and its underlying .NET platform. Covers the use of inheritance and composition in software design and development of complex C#.NET applications. Topics include classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes, and low-level language features.

CSYE 6205. Concepts of Object-Oriented Design with C++. 4 Hours.
Introduces object-oriented design and programming via the C++ programming language. Covers the use of inheritance and composition in software design and development of complex C++ applications. Topics include classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes, and low-level language features. Requires a course project.
CSYE 6220. Enterprise Software Design. 4 Hours.
Designed to build on previous experience in concepts of object-oriented design courses with equal focus in the three areas of architecture, design, and implementation. Instruction and hands-on exercises cover both server-side and client-side web programming. Offers students an opportunity to build a conceptual understanding and to gain practical experience with popular frameworks (Spring MVC, Hibernate, and Dojo or jQuery) that increase productivity, empower developers, and greatly simplify web development. The goal is to be able to build the server side and client side of substantial web-based, client-server, database-intensive, multitier applications.

CSYE 6225. Network Structures and Cloud Computing. 4 Hours.
Offers a practical foundation in cloud computing and hands-on experience with the tools used in cloud computing. Designed as a foundation course for cloud-aware, adept professionals. Focuses on the fundamentals of cloud computing, the principal areas of cloud architectures, cloud security, cloud governance, cloud storage, cloud virtualization, and cloud capacity. Discusses the Internet evolution that led to cloud and how cloud applications revolutionized Web applications.

CSYE 6230. Operating Systems. 4 Hours.
Covers basic concepts of operating systems and system programming, such as utility programs, subsystems, and multiple-program systems. Main topics include processes, interprocess communication, and synchronization; memory allocation, segmentation, and paging; loading, linking, and libraries; resource allocation, scheduling, and performance evaluation; file systems, storage devices, and I/O systems; and protection, security, and privacy. Emphasizes key concepts through code design and development.

CSYE 6305. Introduction to Quantum Computing with Applications. 4 Hours.
Addresses how scientists and engineers can use quantum computers to simulate large quantum mechanical systems easily, which is crucial in discovery of new lifesaving drugs and new efficient materials. Quantum computers maintain an abstract state where both 0 and 1 states exist simultaneously with some probability. The course delves deeper into how such an abstract state can be realized physically and used as a computing tool to simplify algorithm implementation and execution. Offers students an opportunity to learn about the latest breakthroughs in cryptography systems (RSA), as well as fast database search; accurate weather forecasting; ultrasecure communication; and fast image recognition.

CSYE 6510. Fundamentals of the Internet of Things. 4 Hours.
Explores the foundations of and technologies involved in the Internet of Things (IoT). Topics include machine-to-machine (M2M) communications and its relationship with IoT. Examines fundamental components of the IoT architecture reviewing industry standards. Presents a large array of case studies. Discusses the fundamentals of data networks with a focus on different wireless technologies relevant to IoT, including the latest developments in IEEE 802.11, IEEE 802.15.4, and BLE, as well as network layer protocols such as 6LoWPAN that are critical to the deployment of wireless IoT networks. Discusses a range of IoT application protocols, especially MQTT, CoAP, and AMQP. Also explores IoT security and privacy considerations and identification mechanisms for IoT devices. Introduces wireless sensor networks and routing protocols for wireless networks.

CSYE 6530. Connected Devices. 4 Hours.
Offers an in-depth, software-intensive exploration of the Internet of Things (IoT)—from device to cloud—culminating in a semester-long project where each student designs, builds, and presents an end-to-end, integrated IoT solution. Covers IoT concepts and architectures, and incorporates significant software development activities through weekly modules. Includes testing, DevOps, and messaging protocols specific to the IoT; device integration; and cloud services designed for IoT ecosystems.

CSYE 6700. Technical Writing and Professional Development. 0 Hours.
Emphasizes professional communication skills through intensive verbal practice and technical writing application. Students work together in groups and individually to practice verbal and written communication to increase their English competency and comfort level for work in the United States. Offers students an opportunity to develop their ability to communicate technical skills sets in a professional setting. This course does not count toward graduation requirements.

CSYE 6962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CSYE 7105. High-Performance Parallel Machine Learning and AI. 4 Hours.
Explores the parallelization of machine learning and deep learning code that leads to high performance on heterogeneous cluster architectures. Includes the applications to a variety of domains, including image classification, speech recognition, and natural language processing, etc. Covers a brief overview of the emerging parallel computing applications. Analyzes system architectures for different kinds of parallel computing systems (shared-memory system, distributed-memory system, accelerator system, and hybrid). Offers students an opportunity to practice the principles and the practice of the emerging parallelism-based machine-learning paradigm.

CSYE 7125. Advanced Cloud Computing. 4 Hours.
Examines a collection of repeatable, generic software design patterns such as sidecar pattern, ambassador pattern, adapter pattern, event driven, stream and batch processing, containers and container orchestration with Kubernetes, replication, partitioning, transactions, consistency, and consensus to help make the development of reliable distributed systems more approachable and efficient. Microservices, containers, and container orchestration have fundamentally changed how distributed systems are developed. Offers students an opportunity to determine which kind of technology is appropriate for which purpose and to understand how these patterns can be combined to form the foundation of a good application architecture.

CSYE 7200. Big-Data System Engineering Using Scala. 4 Hours.
Covers the fundamentals of functional programming with Scala and seeks to provide a basic, practical foundation for students who want to use it as a language for working with big-data platforms. Scala is one of a new breed of general-purpose functional programming languages that is strongly typed and is object oriented. It runs on the Java virtual machine and is able to share libraries from the vast collection of open-source projects written in Java. For these reasons it is readily accessible by programmers of Java, C++, and similar languages.
CSYE 7215. Foundations of Parallel, Concurrent, and Multithreaded Programming. 4 Hours.
Covers all aspects of concurrent program design, development, and implementation utilizing the Java multithreading API/facilities. Topics covered include thread safety and lifetime issues, block structured versus explicit synchronization, intrinsic versus explicit locking, thread pools, liveness issues, deadlock, livelock, race conditions, atomicity, performance and scalability, execution policies, test strategies. Major Java multithreading API/facilities covered include synchronized blocks, wait sets, intrinsic locks and condition variables, synchronized and concurrent collections, executor framework. Comparisons between the Java multithreading API and the Posix Pthreads multithreading standard are provided.

CSYE 7220. Deployment and Operation of Software Applications. 4 Hours.
Introduces the four most popular infrastructure languages—Chef, Puppet, Ansible, and Salt—and codes with them in the same way that we code with Java, Python, C#, and Javascript. IT infrastructure languages and their underlying methods and tools, referred to as DevOps, bridge the gap between software development and software administration. Instead of recruiting CPU cycles on our laptops, we create and manage virtual IT infrastructures on a public cloud. Offers students an opportunity to learn how to manipulate virtual machines, containers, and lambdas and set up assembly lines on public clouds in the fashion of a Model T assembly line.

CSYE 7224. Engineering Reliable, Scalable, and Maintainable Distributed Systems. 4 Hours.
Covers repeatable, generic software design patterns such as sidecar, ambassador, adapter, event driven, stream and batch processing, containers and container orchestration, replication, partitioning, transactions, consistency, and consensus to help make the development of reliable distributed systems more approachable and efficient. Studies the common language and framework these patterns provide. Microservices, containers, and container orchestration have fundamentally changed how distributed systems are developed. Designed to find ways of thinking about distributed systems—not just how they work, but also why they work, and what questions we need to ask. Offers students an opportunity to decide which kind of technology is appropriate for which purpose and to understand how these patterns can be combined to form the foundation of a sound application architecture.

CSYE 7230. Software Engineering. 4 Hours.
Looks at the software life cycle (requirements analysis and specification, software design, coding, testing, and maintenance). Offers verification, validation, and documentation at various stages of the life cycle. Covers the Unified Modeling Language as applied to the software life cycle. Covers applications of design patterns. Overviews user interface design, software metrics, and software development environments. Emphasis is on modular software construction and development of modular libraries. Requires a small software development project.

CSYE 7245. Big-Data Systems and Intelligence Analytics. 4 Hours.
Offers students an opportunity to learn a hands-on approach to understanding how large-scale data sets are processed and how data science algorithms are adopted in the industry through case studies and labs. This project-based course builds on INFO 7390 and focuses on enabling students with tools and frameworks primarily to build end-to-end applications. The course is divided into three parts: building the data pipeline for data science, implementing data science algorithms, and scaling and deploying data science algorithms.

CSYE 7250. Big Data Architecture and Governance. 4 Hours.
Focuses on creating and managing a data-driven enterprise. Geared to current IT technical professionals, data scientists, technical project managers, aspiring IT professionals, and managers who want to understand the complex nature of creating and managing data-driven projects to support the new and legacy data environments. Covers the analysis that is required to design data-driven projects and make appropriate recommendations for the target state of an organization. This analysis is used as input to create a comprehensive road map to achieve the target state and includes current and future uses of data, consumption methods, data sources and categories, and aggregation and quality requirements.

CSYE 7270. Building Virtual Environments. 4 Hours.
Covers the basics of three-dimensional graphics programming using the Unity game engine. Includes a built-in terrain editor; a shader development facility; built-in physics; and advanced lighting, shadows, and audio to build 3D virtual environments and serious games. Javascript and C# can be used for scripting. Assets from various 3D modeling programs can be imported. Facilities to publish to the PC, Mac, iPhone and Wii and support for real-time multiplayer games are available. Requires a final project.

CSYE 7280. User Experience Design and Testing. 4 Hours.
Introduces user experience concepts while working on Web design projects. Offers students an opportunity to build the necessary skill sets to make better decisions when designing contemporary websites that cater to customer needs. Students practice interview techniques to understand user requirements while keeping user experience central to the effort. Uses wireframes and user scenarios to drive the creative design process. Various case studies are introduced and discussed in team settings to emphasize user perspectives. Uses quality assurance and usability testing to drive validation and user-acceptance testing and approvals.

CSYE 7370. Deep Learning and Reinforcement Learning in Game Engineering. 4 Hours.
Introduces a deep learning and reinforcement learning framework for games called ML-Agents, which enable games and simulations to serve as environments for training intelligent agents. Studies and reviews classical game artificial intelligence (game AI), primarily search and decision trees. Uses game AI to generate responsive, adaptive, or intelligent behaviors primarily in nonplayer characters (NPCs) similar to human-like intelligence. Game AI includes everything from simple chasing and evading to pattern movement, to create opponents with complex tactical and strategic decisions.

CSYE 7374. Special Topics in Computer Systems Engineering. 4 Hours.
Covers the basics of three-dimensional graphics programming using the Unity game engine. Includes a built-in terrain editor; a shader development facility; built-in physics; and advanced lighting, shadows, and audio to build 3D virtual environments and serious games. Javascript and C# can be used for scripting. Assets from various 3D modeling programs can be imported. Facilities to publish to the PC, Mac, iPhone and Wii and support for real-time multiplayer games are available. Requires a final project.

CSYE 7375. Data Science. 4 Hours.
Focuses on data science, including data science algorithms, and their application in the context of data-driven projects. Offers students an opportunity to learn how to use data science tools and techniques to solve real-world problems. Emphasis is on developing data-driven applications that can be deployed in the context of a larger enterprise.

CSYE 7376. Software Engineering Project. 4 Hours.
Supports teamwork on a large software project under faculty supervision. The projects are drawn from an engineering field, and involve design, systems engineering, manufacturing, planning maintenance, reliability, quality control, risk assessment, project control, evaluation of alternatives, and so on. The project may cover either the whole software development life cycle or a significant part of it.

CSYE 7962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

CSYE 7978. Independent Study. 1-4 Hours.
Offers theoretical or experimental work under individual faculty supervision. May be repeated without limit.
Based on numerous real-world case studies.

and unsupervised learning (clustering, dimensionality reduction, support vector machines, kernels, neural networks, deep learning) include supervised learning (parametric/nonparametric algorithms, best practices. Lays the foundation of how learning models are derived from science engineering. Discusses a variety of machine learning algorithms, nonlinear regression, integration, Fourier transformations, numerical and science algorithms. Analyzes helper functions such as linear and matrices and the high-level mathematical functions to operate on these extremely large data sets. Covers large multidimensional arrays and manipulating tables, spreadsheets, and group and pivot tables involving efficiency, and vector manipulations. Covers tools and techniques for efficiency, and vector manipulations.

INFO 6150. Web Design and User Experience Engineering. 4 Hours.

Covers computer information systems and the decision-making process, determination of information requirements, system development life cycle, and system modeling and analysis. Uses a hands-on approach to introduce the student to software engineering methodologies and practices, business requirements specification, business process design, model-driven object-oriented design, software development, and maintenance. Emphasizes the effective leverage of the Unified Modeling Language (UML) to transform business issues and objectives to concrete software solutions that meet business needs and usability and user interface design as critical elements of a successful software engineering engagement.

INFO 6245. Program Structure and Algorithms. 4 Hours.

Covers the basics of Java programming such as arrays, control structures, class definitions, class hierarchies, inheritance, objects, streams, constructors, collections, and GUI components. Describes how to develop and execute Java applications and incorporates several programming projects, which strengthen the understanding of object-based and event-driven programming. Provides the student with the opportunity to achieve a strong working competency in object-oriented programming using the Java programming language.

INFO 5100. Application Engineering and Development. 4 Hours.

Offers analytical and/or experimental work conducted under the direction of the faculty in fulfillment of the requirements for the degree. Requires first-year students to attend a graduate seminar program that introduces students to the methods of choosing a research topic, conducting research, and preparing a thesis. Requires successful completion of the seminar program. May be repeated without limit.

Information Systems Courses

Search INFO Courses using FocusSearch (http://catalog.northeastern.edu/class-search/?subject=INFO)
INFO 6250. Web Development Tools and Methods. 4 Hours.
Explores advanced server-side technologies and tools necessary to
design and engineer complete web-based enterprise applications quickly.
Designed to build on previous experience to cover the life cycle of a
web-based application. Focuses on MVC web development frameworks
to build server-side, data-intensive, and multitier web applications.
Additionally, discusses designing rich internet applications (RIA) using
AJAX and service-oriented architecture (SOA) using REST.
INFO 6251. Lab for INFO 6250. 0 Hours.
Accompanies INFO 6250. Offers additional instruction in Web tools
discussed in class.
INFO 6255. Software Quality Control and Management. 4 Hours.
Examines techniques for the management and evolution of software
systems. Topics include managing software as an asset; life cycle
development and rapid development technologies; maintainability;
quality assurance of software systems including testing strategies and
problem analysis; software risk analysis; analysis of software project
failures; process models, such as CMM and ISO 9001; configuration
management; and the impact of new development technologies on
software management.
INFO 6350. Smartphones-Based Web Development. 4 Hours.
Covers application development for mobile devices using advanced
development platforms. Focuses on how to write mobile applications
using cross-platform development tools and processes. Topics include
user interfaces, the software life cycle, persistent storage, networking
using HTTP and other REST interfaces, and mobile/handheld data
applications. Requires a final project.
INFO 6660. Business Ethics and Intellectual Property for Engineers. 4
Hours.
Seeks to support successful engineering careers by offering students
an applied understanding of ethical principles in the workplace and
fundamentals of intellectual property and the American legal system.
Seeks to increase students‘ awareness of the ethical implications of their
work and to influence colleagues to think and act in a socially cognizant
manner. Introduces ethical principles and codes of professional ethics;
types of intellectual property (patents, trade secrets, trademarks,
copyrights); and fundamentals of the American legal system (sources
of American law, contracts, torts, intellectual property, antitrust).
Offers students an opportunity to practice verbal communication and
presentation skills; develop an applied understanding of the relationship
and differences between legal liability and ethical behavior; and develop
applied critical thinking, communication, and presentation skills.
INFO 6962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions.
May be repeated without limit.
INFO 7110. High-Performance Coding for Fintech. 4 Hours.
Distills the programming challenges constantly faced by quantitative
developers in the fintech space. Presents high-performance computing
challenges as well as their solutions for investment banks, market-
making firms, capital management funds, and loan-financing institutions.
Covers the art of high-performance computing using object-oriented
structure of five prevailing programming languages widely adopted in
the fintech industry: Java, C++, MATLAB, R, and Python. In particular,
the course offers students an opportunity to obtain capabilities to
successfully complete high-performance computing tasks in the
following five application areas: global-macro arbitrage, quantitative
equity portfolio management, option pricing and trading, fixed-income
securities, and market making.
INFO 7205. Advanced Application Engineering Project. 4 Hours.
Offers students an opportunity to master advanced software design and
programming techniques for building complex software applications
quickly. The engineering issues addressed assume the business
problems are difficult to understand and manage in a practical manner
—the system capacity must support thousands or even millions of
users in a multitude of roles. Addresses high-performance computing
requirements, such as concurrency and control, scalability, replication,
and failover.
INFO 7225. Accounting and Budgetary Systems for Engineers. 4 Hours.
Covers the latest engineering principles necessary for building complex
software systems that comply with recognized standards in the
financial industry. With automated business processes today, risk and
responsibility are shifting to information technology (IT) systems. Offers
students an opportunity to learn how to incorporate information-based
controls related to the financial industry that signal trouble, detect
violations, and provide accountability, as well as a working approval
process. Emphasizes software design. Seeks to help engineers construct
complex software from a sophisticated engineering perspective.
Examines how to put together cutting-edge organizational systems that
people in the financial world can put to good use. Designed to prepare
students for jobs in the building, maintaining, and employment of such
information systems.
INFO 7245. Agile Software Development. 4 Hours.
Offers students an opportunity to achieve a high level of practical
understanding of software development life cycle (SDLC) with emphasis
on agile and adaptive incremental methodologies. Examines techniques
for the management and evolution of software systems, including
project planning from requirements gathering, analysis, estimation, and
releasing using a hands-on approach to implement agile methodologies.
Also covers maintainability, including software risk analysis, project
retrospectives, and process models such as capability maturity model,
configuration management, and their practical implementation.
INFO 7250. Engineering of Big-Data Systems. 4 Hours.
Introduces a general framework for thinking about big data. Services
such as Web analytics and intelligent e-commerce have promoted a rapid
increase in the volume of data generated, analyzed, and archived. In
order to solve the problems related to big data, a newer type of database
product has emerged. Covers how to apply technologies like Hadoop,
Accumulo, MongoDB, and various NoSQL databases to build simple,
robust, and efficient systems to manage and analyze big data. Also
describes an easy approach to big data systems that can be built and run
by a small team of students. Guides students through the theory of big
data systems, how to implement them in practice, and how to deploy and
operate them once they are built.
INFO 7255. Advanced Big-Data Applications and Indexing Techniques. 4
Hours.
Studies advanced indexing techniques and algorithms for big-data
platforms such as Hadoop and NoSQL databases. Covers big-data
design and indexing patterns to organize, aggregate, manipulate, and
analyze huge amounts of data beyond human scale. Offers students an
opportunity to learn advanced techniques to improve the performance
and robustness of the advanced big-data programming models.
Additional areas of focus include scalable graph databases, advanced
indexing, and full-text searching in graph databases.
INFO 7260. Business Process Engineering. 4 Hours.
Addresses the question of how to understand and specify the flow of work responsibility and movement of information throughout the enterprise. For businesses to maximize the benefits of technology, they must transform their ad-hoc and often poorly defined ways of doing things to formal business processes. Analyzes the specification and implementation of complex information systems that integrate well into core business operations. Offers students an opportunity to learn how to use agile process specification techniques, dynamic process execution, and real-time measurement and reporting to support continuous business improvement and change.

INFO 7275. Advanced Database Management Systems. 4 Hours.
Introduces the skill set required to become a serious database applications developer. Offers an overview of the Oracle9i object-relational database system for those who have mastered the fundamental principles of database design and are competent with basic SQL. Gives students the opportunity to develop a strong understanding of the PL/SQL programming language, which is used to create triggers, user-generated functions, stored procedures, and packages for programming Oracle objects. Emphasizes advanced SQL features and Oracle-specific SQL enhancements. Covers optimization and tuning issues. Covers corresponding material for Transact-SQL (used for Microsoft SQL Server and Sybase database systems) as time and resources permit.

INFO 7280. Model-Driven Architecture. 4 Hours.
Develops the skills to utilize new software modeling and management techniques in each state of the life cycle of component-based software systems. Applies and extends a basic knowledge of the Unified Modeling Language (UML). Introduces and applies metamodel management concepts using the OMG metaobject facility as a technology baseline. Develops a component-based software project throughout the course using C++ or Java; grading primarily based on the software project and its public presentation.

INFO 7285. Organizational Change and IT. 4 Hours.
Focuses on the change effort needed to integrate a project into the firm's organizational structure, culture, business, and process metrics. Geared for students undertaking enterprise resource planning systems, or those involved in small or large organizational reengineering projects designed to make IT a primary focus of the firm's business strategy. Topics include management theories and organizational design principles; strategy and critical success factor formulation; methods to reach information systems maturity; business process modeling techniques; quality, the mindset, and the problem-solving tools; human resource, cultural, and technical change enablers; how to plan a business reengineering project; and implementation of major organizational change.

INFO 7290. Data Warehousing and Business Intelligence. 4 Hours.
Examines the technical and management aspects of building a data warehouse. Explores the architecture, infrastructure, processes, data quality, database design, and data analysis involved in building the data warehouse for business analysis. Management issues include business goals, tool selection, project management, personnel skills, training, and user requirements. Topics include dimensional data modeling, extraction/transformation/load processes, data quality problems, datamarts, operational data stores (ODS), staging databases, and online analytic processing (OLAP).

INFO 7300. Engineering Cybersecure Software Systems. 4 Hours.
Addresses design and implementation issues critical to producing cybersecure software systems by using a software development perspective. Deals with the question of how to make the requirements for confidentiality, integrity, and availability integral to the software development process from requirements gathering to design, development, configuration, deployment, and ongoing maintenance. Covers emerging software life-cycle practices that address both cybersecurity problems caused by bad software practices that leave software vulnerable to cyberattack and other software vulnerabilities that are caused by deficiencies in modeling of security requirements, architecture, and design issues.

INFO 7325. Introduction to Information Technology Auditing. 4 Hours.
Designed to provide a foundation for the study and professional career development of information technology (IT) auditing. Introduces the fundamentals of IT auditing, core reasons why this is a specialized area of auditing, and the principle objectives of IT auditing and its relationship to integrated financial or operational auditing. Offers an insight into management's objectives regarding IT risk management. Uses the Cobi governance and control framework to emphasize management issues regarding control of IT and the achievement of value through managed IT processes. Introduces three primary types of IT audits: the audits of computerized information systems, IT processing environments, and the process of developing and implementing information systems.

INFO 7330. Information Systems for Healthcare-Services Delivery. 4 Hours.
Addresses the important information systems questions facing the delivery and assessment of healthcare services from administrative, financial, and clinical perspectives. These include the use of electronic medical records; health information exchanges; and performance evaluation of providers, patients, and payers. Provides an introduction on how healthcare is delivered. Also focuses on various information management tools being implemented as well as those needed to move care delivery and quality forward.

INFO 7350. Systems and Cybersecurity Fundamentals. 4 Hours.
Presents the principles of data and technology that define systems and cybersecurity from a socio-technical perspective. Offers students an opportunity to gain insight into the importance of systems security within cybersecurity and the integral role that information systems analysts play in developing cybersecure systems that people use. Through hands-on dynamic learning, students explore foundational cybersecurity principles, security architecture, risk management, attacks and mitigation strategies using Kali Linux, cyber incident response, and emerging IT/IS technologies.

INFO 7365. Enterprise Architecture Planning and Management. 4 Hours.
Defines IT strategies for implementing business-driven and technology-based modernization programs, companywide. Covers how to institute improved IT infrastructures to facilitate strategically informed decisions, at all hierarchical levels, across all business units and functional boundaries. Studies the strategies, programs and projects, business models, methods, and technologies needed to bring about deliberate enterprise-scale change as business strategies evolve. Offers students an opportunity to learn how to construct enterprise architectures and use them as road maps to budget scarce capital investment resources to IT development projects. Topics include system interoperability, business and technology alignment, system flexibility and adaptability to change, IT planning, and effective communication with the management leadership.
INFO 7370. Designing Advanced Data Architectures for Business Intelligence. 4 Hours.
Focuses on designing advanced data architectures supporting structured, unstructured, and semistructured data sources; hybrid integration and data engineering; and analytical uses by casual information consumers, power users, and data scientists. Technologies include databases (relational, columnar, in-memory, and NoSQL); hybrid data, application, and cloud integration; data preparation; data virtualization; descriptive, diagnostic, predictive, and prescriptive analytics; and on-premise and on-cloud deployments. Topics include data structures, data models, data integration workflow and data engineering, data integration, data preparation, and data virtualization.

INFO 7374. Special Topics in Information Systems. 1-4 Hours.
Covers state-of-the-art material of current interest. May be repeated without limit.

INFO 7375. Special Topics in Artificial Intelligence Engineering and Applications. 1-4 Hours.
Covers recent advances in neural nets and deep learning techniques with applications to large-scale engineering problems.

INFO 7385. Managerial Communications for Engineers. 4 Hours.
Focuses on communication strategies and tactics for engineers at the interpersonal, team, and organizational level. Course topics include forms (oral and written), styles, and differences in communication; coaching and giving feedback to staff; and building teams, managing conflict, and special topics in organizational communication. The primary goal is to strengthen the students’ social and emotional intelligence skills to help them progress along their engineering career path. Combines academic content with practical skill-building activities.

INFO 7390. Advances in Data Sciences and Architecture. 4 Hours.
Covers a wide range of skills and responsibilities that are necessary for managing complex business performance and operational data. Such data tend to be fragmented, poorly organized, and often flawed. Offers students an opportunity to learn how a more up-to-date mapping of complex data works and to be alerted to the care and attention they must give to such a task as well as the implications of the results. Covers best practices for managing all aspects of the data transformation life cycle, covering broad areas such as requirements gathering, meta-model design, data integration and transformation, as well as implementation and ongoing operations. Discusses tools for mapping fragmented data into business intelligence solutions that guide successful strategies.

INFO 7405. Advances in Engineering Medical Information Systems. 4 Hours.
Focuses on the fundamentals of engineering patient medical records as timelines of medical encounters that capture critical clinical decisions made in various contexts such as assessments, diagnoses, treatments, etc. Emphasizes semantically rich clinical information models to support predictive analysis in order to recognize patterns of disease early. Record systems typically focus on data recording for legal purposes, ignoring the critical needs of patients and caregivers. Introduces innovative software design and architecture techniques that recognize the complex interaction between patients and caregivers, provide immediately available detailed information for both, and thus invigorate clinical workplaces. Covers techniques for engineering medical applications as sociotechnical systems that promote the safety, effectiveness, and efficiency of core clinical operations.

INFO 7500. Cryptocurrency and Smart Contract Engineering. 4 Hours.
Seeks to provide a detailed understanding of the function and deployment of smart contracts using the Solidity language. Digs deep into the technical design and operation of blockchain platforms and specifically the implementation of smart contracts for operationalizing business processes. Offers students an opportunity to practice the development of decentralized autonomous organization applications using blockchain scripting languages.

INFO 7510. Smart Contract Application Engineering and Development. 4 Hours.
Emphasizes the essential coding skills for implementing self-enforcing, multiparty, mutually beneficial, contractual rights and obligations on top of blockchain technologies. Offers students an opportunity to learn how to leverage the principles and mechanisms of “decentralized autonomous organization” to programmatically coordinate the interaction between participating parties at a global scale without the need for trusting a third party and how to build blockchain-type applications that automate the interaction of a network of participating entities such as buyers, sellers, suppliers, insurance, and finance.

INFO 7520. Engineering of Advanced Cryptocurrency Systems. 4 Hours.
Addresses programming and information systems aspects of bitcoin and other cryptocurrencies. Topics covered include fundamentals of bitcoin mining, the theory of distributed consensus, principles of strong anonymity and untraceability, smart contract security, and peer-to-peer networking. Offers students an opportunity to learn about current developments in, and challenges facing, the use of cryptocurrencies in terms of the computing platform and systems integration. Students also have an opportunity to gain practical experience through challenging programming projects.

INFO 7525. Regulatory Aspects of Smart Contract Automation. 2 Hours.
Addresses the legal implication of using the blockchain to transfer and exchange money, perform trade transactions, maintain ownership of property, and enforce contractual obligations in secure and cost-effective ways. These applications present significant legal challenges in finance, property rights, and general commercial contracts in all industries. Offers students an opportunity to acquire the tools to engineer systems that adhere to existing and evolving regulatory frameworks. Highlights challenges around the issues of taxation, financial crimes, and money laundering, since blockchain technologies were designed to facilitate cross-border transactions.

INFO 7530. Engineering Multipart Autonomous Agent Systems. 2 Hours.
Examines how to extend multiagent distributed systems methods and tools to solve complex problems meant to run on the blockchain using smart-contract programming languages such as Solidity and others. Blockchain technology and multiagent distributed systems theory share common ground. Both are characterized by autonomy, localized knowledge, and independence. Offers students an opportunity to deepen their studies of how to build systems that deliver system-level results through the interaction of simple agents or participants. Each party independently determines its response to the state of its local environment and the interactions with other parties on the blockchain.

INFO 7535. Digital Smart Contracts Product Innovations. 2 Hours.
Addresses the issue of how blockchain technology creates new ways of doing business. Blockchain technology uses bitcoin cryptocurrency to create value in a virtual setting. By linking the blockchain with real currency and the financial system, data, as well as business processes, a new breed of products and services can be realized. Explores innovative and disruptive applications of the blockchain.
INFO 7610. Special Topics in Natural Language Engineering Methods and Tools. 4 Hours.
Covers the latest techniques in natural language processing with applications to unstructured data.

INFO 7962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

INFO 7978. Independent Study. 1-4 Hours.
Offers work performed under individual faculty supervision. May be repeated without limit.

INFO 7996. Thesis Continuation. 0 Hours.
Continues theoretical and experimental work conducted under departmental faculty supervision.

Telecommunication Systems Courses
Search TELE Courses using FocusSearch (http://catalog.northeastern.edu/class-search/?subject=TELE)

TELE 5330. Data Networking. 4 Hours.
Provides the basics of data networking protocols and architectures. Topics include protocol architecture of the internet; application protocols such as FTP, SMTP and HTTP, web caching, DNS, CDNs, and P2P applications; use of TCP and UDP socket programming to develop network applications in Python; transport protocols, including TCP, UDP, and TCP congestion control; IP protocol, addressing, IPv4 and v6, NATs, ICMP and tunnels; routing algorithms and OSPF; data link protocols, encoding, framing, error control, and PPP; switched LANs, ARP, Ethernet, and VLANs; wireless LANs and 802.11 protocols; and network security—encryption, message integrity, authentication protocols, key management, SSL/TLS, IPsec, and 802.11i.

TELE 5331. Lab for TELE 5330. 0 Hours.
Addresses a range of networking concepts, including routers, switches, and Linux servers, and how they are configured to create a virtual environment. Covers the installation and configuration of networking concepts such as DNS, DHCP, and firewalls and the creation of virtual environments. Requires students, working in teams, to configure one or more components; the teams then must interconnect the components to form a small network. In the process of configuration and integration, students are exposed to troubleshooting at various protocol layers and have an opportunity to become familiarized with different operating systems and networking tools.

TELE 5340. Telecommunications Public Policy and Business Management. 4 Hours.
Introduces students to business management issues, such as basic accounting, finance, marketing, and operations in the telecommunications field, and also topics such as the time value of money and decision making. Also includes issues of human relations, organizational behavior, and business strategy. Provides an understanding of the regulatory environment of the telecommunications industry. Topics include universal service, service quality tariffs, the Modified Final Judgment and Telecom Act of 1996, market restrictions and segmentation, the current competitive environment in the United States and internationally, interconnection including unbundling, collocation, economic issues, and global trends in market reform.

TELE 5350. Telecom and Network Infrastructure. 4 Hours.
Provides in-depth treatment of the wireline and wireless infrastructure of the network supporting all telecommunication, internet, and enterprise applications. Covers the basics of communications—source coding, baseband and broadband modulation and transmission, channel coding, spread-spectrum, multiuser radio communications, radio link analysis, and propagation. Also covers the wireline core network—digital and optical transmission, framing, network synchronization, asynchronous and synchronous multiplexing, cross connects, SONET/SDH, DWDM, OTN, protection switching, and network availability. Addresses wireline (DSL, digital cable, FTTH, PONs) and wireless access (cellular, Wi-Fi), frequency reuse, and handoff. Also addresses support of data transport (switched Ethernet, VLAN, IP, MPLS) and application networks (PSTN, mobile core, internet, IPTV, and virtual networks).

TELE 5360. Internet Protocols and Architecture. 4 Hours.
Offers in-depth treatment of protocols used in the internet, wireless access, and enterprise networks. Topics include protocols for network layer QoS (including DiffServ, ECN, RSVP, MPLS); protocols for security, including both access control and network-level security (e.g., X.509, SSL/TLS, IPsec, IKE, EAP); protocols for interdomain routing (BGP); protocols to support multicast, broadcast, and streaming applications; protocols to support host mobility, large server deployments, content distribution, and enterprise networks (VLANs, etc); and protocols to support IPv6 (e.g., address assignment) and its interoperability with IPv4. Also covers network design architectures for cloud computing, data centers, content distribution, layer-2 networks, etc. Discusses general scaling issues for large networks.

TELE 5600. Linux/UNIX Systems Management for Network Engineers. 4 Hours.
Introduces UNIX/Linux in a networking/Internet environment. Covers operating system concepts, tools, and utilities; networking and security issues; and data and text processing using scripts and filters. Addresses basic administrative tasks such as managing users, file systems, security, and software. Covers networking topics such as network configuration, daemon processes, SSH, DNS, DHCP, diagnostic tools, and the use of scripts and automation to manage applications and systems, as well as security topics such as name and authentication services, access control lists, file modification protections, and firewalls.

TELE 5976. Directed Study. 1-4 Hours.
Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

TELE 5978. Independent Study. 1-4 Hours.
Offers work performed under individual faculty supervision. May be repeated without limit.

TELE 6100. Mobile Wireless Communications and Networking. 4 Hours.
Studies communications and networking issues in providing broadband wireless access to mobile applications. Discusses networking technologies required by converged IP-based applications. Covers converged network architectures and the interworking of different generations of access technologies with the Evolved Packet Core (EPC). Registration limited and by application only; it is expected that all students have prior knowledge of digital communications, radio propagation, cellular networks, and second-generation wireless standards.
TELE 6350. Unified Communications and Collaboration. 4 Hours.
Explores the technologies that underlie unified communications and collaboration (UCC) applications and communications networks. With the migration of communications infrastructure to the cloud, a democratization of communications is underway that allows customers to build powerful UCC applications on top of networks managed by service providers. UCC applications integrate audio and video conferencing, messaging, virtual whiteboards, and enhanced call control capabilities. Major topics include architecture of communication networks, IP-based voice, video and messaging protocols, public cloud-based communications, browser-based communications, and Communications Platforms-as-a-Service (CPaaS). Uses class projects to offer students an opportunity to get hands-on experience in addressing real-world problems in UCC communications infrastructure, services, and applications.

TELE 6400. Software-Defined Networking. 4 Hours.
Introduces the foundational theories and technologies of software-defined networking (SDN), a new paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire physical network. Discusses SDN technologies, such as the OpenFlow specification and OpenDaylight controller, and introduces students to SDN applications and network function virtualization (NFV). Offers hands-on exposure to popular open-source software and technologies through student projects. Requires good knowledge of Java or Python.

TELE 6550. IoT Embedded System Design. 4 Hours.
Explores the technologies and techniques behind the field of design and development of modern embedded devices in IoT systems. Specifically, focuses on a hands-on approach to software development on an embedded hardware platform. Through a final project, students have an opportunity to build and deploy an industrial-grade state-of-the-art embedded IoT solution. Presents C coding, but also reviews the ARM ISA as well as C++ development and debugging. Applies theoretical concepts to practical issues including pipelining, parallelism, concurrency, memory architectures, and I/O (GPIO, I2C, UART, SPI). Introduces bare-metal and OS-based development focusing on multitasking, scheduling, interrupts, threads, processes, tasks, IPC, drivers, contention resolution, and shared memory. Introduces state-of-the-art Google Cloud IoT and FreeRTOS APIs.

TELE 6603. Special Topics—Networking. 1-4 Hours.
Description to come. May be repeated up to eight times.

TELE 6945. Master's Project. 4 Hours.
Offers theoretical or experimental work under individual faculty supervision.

TELE 6962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

TELE 7374. Special Topics in the Internet of Things. 4 Hours.
Offers topics of current interest in the Internet of Things. Topics vary from semester to semester. May be repeated without limit.

TELE 7945. Master’s Project in Cyber Physical Systems. 4 Hours.
Supports a project in cyber-physical systems and the Internet of Things that may have both hardware and software elements. Project to be carried out under faculty supervision.