Our interdisciplinary Doctor of Philosophy program in bioengineering draws on faculty across the university and reflects the significant strengths of bioengineering research in multiple areas. Students accepted to the bioengineering program will undertake a rigorous core curriculum in basic bioengineering science followed by an immersion track curriculum. There are currently eight tracks from which to choose:

- Track 1: Biomedical Imaging and Signal Processing
- Track 2: Biomechanics and Mechanobiology
- Track 3: BioMEMs/BioNANO
- Track 4: Biochemical and Bioenvironmental Engineering
- Track 5: Motor Control
- Track 6: Biocomputing
- Track 7: Cell and Tissue Engineering
- Track 8: General Bioengineering Studies

Biology can inspire engineering. Increasingly, discoveries in the life sciences reveal processes, complexity, and control without analogy in the limited world of traditional engineering. Current methods of producing nanoscale control over molecules cannot reproduce the organization found in even the simplest organisms. Energy capture, robust control, remediation, and self-assembly are all employed with efficiency unparalleled by anything in today's laboratories. At the same time, traditional engineering disciplines struggle to find new and complex challenges. The last fifty years of basic life science research have gradually peeled the layers of complexity from biological processes, unmasking the fundamental underpinnings on which biological systems are constructed. Bioinspired engineering has the potential to transform the technological landscape of the twenty-first century. Astonishingly, it represents merely one of the myriad opportunities presented at the interface of biology and engineering.

The field of bioengineering is broad and includes all research at the interface of engineering and biology—this includes bioprocesses, environmental microbiology, biomaterials and tissue engineering, bioelectricity, biomechanics, biomedical and biological imaging, nanotechnology in medicine and the environment, and engineering design for human interfacing. At Northeastern, bioengineering PhD students have an opportunity to be trained to advance in bioengineering across a wide range of disciplines while they perform highly focused and cutting-edge bioengineering research with one of our many core or affiliated faculty members.

DEGREE REQUIREMENTS

Completion of the PhD degree requires students to successfully complete the following requirements:

- **Curriculum:** The curriculum comprises a strong fundamental, broad core of courses that is then coupled with one of a series of available tracks for depth in a particular field of study.
- **Qualifying examination (written and oral):** To qualify to continue in the PhD program, students must pass the bioengineering comprehensive qualifying examination, which comprises the synthesis of knowledge derived from the core curriculum and current literature presented in the form of an R21 NIH-style proposal. Oral defense of the proposal is required to pass the exam as well as satisfactory research progress and satisfactory academic standing. Details of the formal qualification exam procedure and timing are available in the bioengineering office and may be requested electronically at any time from the graduate director. Advanced Entry PhD students must successfully complete the qualifying examination (written and oral) within two years of entry.
 - **Qualifying examination committee:** The qualifying examination committee is composed of a minimum of three members, two of whom must be selected from the list of bioengineering-affiliated faculty. In addition, one of the two affiliated faculty must have a primary appointment in the College of Engineering. The student's primary advisor may not sit on the qualifying examination committee.
 - **Dissertation committee:** The dissertation committee is composed of a minimum of three members, two of whom must be selected from the list of bioengineering-affiliated faculty. In addition, one of the two affiliated faculty must have a primary appointment in the College of Engineering.
 - **Area exam (dissertation prospectus/proposal):** PhD students must submit a "prospectus" to their dissertation committee in the form of an R21 NIH-style research plan and successfully defend the research plan in the form of an open presentation to their dissertation committee. The area exam should be completed as soon as is practical after successful completion of course work and qualifying exams.
 - **Dissertation:** PhD candidates must satisfactorily complete and defend a dissertation describing original research in bioengineering in an open presentation to their dissertation committee.
 - **Dissertation Course Requirements:** After achieving PhD candidacy, the doctoral candidate, in consultation with his or her research advisor, must register in two consecutive semesters (may include full summer term) forDissertation (BIOE 9990). Upon completion of this sequence, the student must then register for Dissertation Continuation (BIOE 9996) in every semester (in each fall and spring term and also in the summer term if summer is the student's last semester) until the dissertation is completed. Students may not register for Dissertation Continuation (BIOE 9996) until they fulfill the two-semester sequence of Dissertation (BIOE 9990).

To meet the full-time registration requirement for PhD students who have completed the majority of their course work and not yet reached PhD candidacy, a zero-credit course, Exam Preparation—Doctoral (BIOE 8960) can be taken if needed to fulfill the full-time course registration requirement. Exam Preparation—Doctoral (BIOE 8960) is an individual instruction course, billed at 1 semester hour, and graded S or U. Exam Preparation—Doctoral (BIOE 8960) does not have any course content, and students must register in a section for which their research advisor is listed as the "instructor."

The curriculum for PhD students with advanced standing will be selected from the available core and elective courses under the guidance of the program director and the student's primary advisor. The advanced standing PhD degree requires a minimum of 16 semester hours of course work to be approved by the graduate director and a completed PhD dissertation. Advanced standing constitutes receipt of a relevant and accepted master's degree at a qualified institution.

The core emphasizes the breadth of topics that our graduates must appreciate as internationally competitive bioengineers. It utilizes existing courses within the College of Engineering as well as introducing new/external courses that are necessary and will be developed.

Track electives may be replaced with up to 12 semester hours of relevant independent studies Independent Study (BIOE 7978).
Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved course work</td>
<td>16 SH (minimum)</td>
</tr>
<tr>
<td>Advanced seminar (register and complete four semesters)</td>
<td>0 SH</td>
</tr>
<tr>
<td>Dissertation</td>
<td>0 SH</td>
</tr>
<tr>
<td>Minimum semester hours required</td>
<td>16 SH</td>
</tr>
</tbody>
</table>

TRACK 1: BIOMEDICAL IMAGING AND SIGNAL PROCESSING

The biomedical imaging and signal processing track reflects Northeastern University's outstanding research profile in various aspects of biological and biomedical imaging and image processing and signal processing. This is evidenced by the Gordon Center for Subsurface Sensing and Imaging Systems, the Center for Communications and Digital Signal Processing Research, and the strong externally funded active research groups and faculty whose interests lie at the intersection of imaging, signal processing technologies, and biological and medical applications.

The courses in this track concentrate largely on general mathematical methods for signal and image processing and image formation and on image acquisition modalities and applications. Research in this area takes place at the intersection of these technical streams, and students completing the track will have a sufficiently strong background in the component areas to be able to carry out high-quality research efforts.

TRACK 2: BIOMECHANICS AND MECHANOBIOLOGY

Biomechanics and mechanobiology are linked by the biological response to applied forces and strains. To understand the overall effect of load on biological systems, it is important to consider not only the deformation and shear rates that result from force application but also the short- and long-term biological responses. The biomechanics and mechanobiology track reflects this understanding and leverages the strong faculty research at Northeastern, which is attempting to tie biomechanics to biological responses at multiple scales.

The biomechanics track is designed to capitalize on the substantial expertise in the mechanical and industrial engineering department, which has a strong fundamental research program in biomechanics. Faculty in the department perform investigations that comprise theoretical, computational, and experimental investigations.

TRACK 3: BIOMEMS/BIONANO

The bioMEMs/bioNANO track reflects Northeastern University's strength as indicated by the NSF Center for High Rate Nanomanufacturing, the NSF/NCI Nanomedicine IGERT training grant, and the strong pharmaceutical sciences department. In addition, Northeastern also has a research presence in MEMs that, when combined with the bioengineering curriculum, presents significant interdisciplinary opportunities for students in the program.

TRACK 4: BIOCHEMICAL AND BIOENVIRONMENTAL

The track reflects strengths in biochemical engineering and bioenvironmental engineering by active research programs focused in pharmaceutical bioprocessing, biomaterials, tissue engineering, drug delivery, environmental microbiology, biotreatment/bioremediation, and environmental modeling.

TRACK 5: MOTOR CONTROL

The motor control track is designed to capitalize on the collective expertise of cross-disciplinary collaborations between existing Northeastern faculty whose research lies at the intersection of sensorimotor control systems, neuroscience, and dynamical systems. Insights into learning and coordination of functional motor behavior provide the basis for a better understanding of neurological diseases of motor function such as stroke, Parkinson's disease, and cerebral palsy. Insights will be the foundation for designing better therapy and rehabilitation.

TRACK 6: BIOCOMPUTING

The biocomputing track draws on strengths in computer engineering and computation applied to bioengineering applications.

TRACK 7: CELL AND TISSUE ENGINEERING

Cell and tissue engineering is a major strength at Northeastern University with several research labs focused on understanding and engineering living cells and tissues. These labs are elucidating the quantitative principles that govern cell fate decisions and are developing design strategies to promote the assembly and patterning of multicellular systems into viable, functional tissues. Cells are remarkable physicochemical systems that sense, respond, and actively reshape their rich microenvironment. Parsing the dialogue between the microenvironment and cells and elucidating design strategies to engineer the dynamic cellular milieu has far-reaching implications for biomedicine, including applications such as tissue engineering and the development of novel therapeutic strategies.

This pioneering, multidisciplinary research is enabled by strengths at Northeastern in key foundational areas, such as biomolecular engineering, computational modeling, developmental biology, imaging, materials science, micro- and nanofluidics, mechanobiology, molecular cell biology, and systems biology.

Cell and tissue engineering is widely recognized as a core subfield of bioengineering. A formal track in this area offers our students a program of study that capitalizes on a major strength at Northeastern.

TRACK 8: GENERAL BIOENGINEERING STUDIES

The general bioengineering studies track provides students with the flexibility to create a custom course plan depending on their individual interests, under the strong advisement of the graduate director.

Program Requirements

Complete all courses and requirements listed below unless otherwise indicated.

Milestones

- Annual review
- Qualifying examination (within two years of entry)
- Dissertation committee
- Area examination (dissertation prospectus/proposal)
- Dissertation defense

Core Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 7390</td>
<td>Seminar (Register and complete four semesters)</td>
<td>0</td>
</tr>
</tbody>
</table>

Approved Course Work

Select courses in consultation with faculty advisor. 16

Dissertation

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 9990</td>
<td>Dissertation</td>
<td></td>
</tr>
</tbody>
</table>

Program Credit/GPA Requirements

16 total semester hours required
Minimum 3.000 GPA required