GIS 5101. Introduction to Geographic Information Systems. 3 Hours. Introduces the use of a geographic information system. Topics include applications of geographic information; spatial data collection; data accuracy and uncertainty; data visualization of cartographic principles; geographic analysis; and legal, economic, and ethical issues associated with the use of a geographic information system.

GIS 5102. Fundamentals of GIS Analysis. 3 Hours. Provides an in-depth evaluation of theoretical, mathematical, and computational foundations of spatial analysis. Topics include data formats, data display, and data definition queries. Mapping techniques are reviewed as are techniques to select, quantify and summarize features; assess the proximity of features to one another; map spatiotemporal changes; and to apply statistical techniques and tools to find patterns in spatial data and their attributes. Software used: Esri - ArcMap, ArcCatalog, ArcGIS Extensions: Spatial Analyst, Network Analyst, and Geostatistical Analyst.

GIS 5103. Foundations of Geographic Information Science. 4 Hours. Introduces geospatial data, technology, visualization, and analysis to support spatial inquiry and decision making. Topics include geospatial principles, geospatial data models and data types, and metadata attribute data, data sources, geospatial software options, quality assurance and quality control, and government/industry application areas. Includes technical knowledge of common geospatial analysis tasks. Offers students an opportunity to obtain hands-on experience using professional-grade platforms (ArcGIS, QGIS) and other geospatial software products.

GIS 5201. Advanced Spatial Analysis. 3 Hours. Provides an in-depth evaluation of theoretical, mathematical, and computational foundations of GIS. Topics include spatial information theory, database theory, mathematical models of spatial objects, and GIS-based representation. Examines advanced concepts and techniques in raster-based GIS and high-level GIS modeling techniques.

GIS 5978. Independent Study. 1-4 Hours. Offers independent work under the direction of members of the department on a chosen topic.

GIS 6320. Use and Applications of Free and Open-Source GIS Desktop Software. 3 Hours. Intended to expose students to free and open source (FOSS) GIS desktop applications (primarily QGIS GRASS GIS) and implementations for them to gain an understanding of the potential benefits or drawbacks of FOSS GIS alternatives compared to proprietary standards such as ArcGIS. Focuses on practical application over GIS theory but students examine historical development of FOSS GIS as well as case studies regarding FOSS GIS utilization to aid in their understanding and appraisal of these applications. Software used: QGIS (Desktop, Browser, Print Composer, DB Manager), GRASS-GIS, Boundless Suite, PostGIS, Spatialite.

GIS 6330. Building Geospatial Systems at Scale. 3 Hours. Demonstrates how to run real-world geoda data analysis over a scalable geospatial database and visualize the results over an interactive map. Examines integration of distributed geo-referenced data, data storage capabilities, and data sharing to explore the benefits of computing capacity. Offers students an opportunity to learn to set up an Azure portal, deploy processes at scale, and solve geospatial business problems with proven combinations of Azure services (including big data, analytics, artificial intelligence, and geolocation).

GIS 6340. GIS Customization. 3 Hours. Provides an in-depth introduction to the customization of Esri ArcGIS using Python with hands-on experience with ArcGIS, ModelBuilder, Python, geoprocessing, and ArcPy. The focus is on automating tasks and workflows in ArcMap using ModelBuilder; applying Python programming in ArcMap and for ModelBuilder; applying practical methods of debugging, tool input parameters, and tool code documentation. Students will create a GIS data processing tool, useful to their work or area of interest, using Python or Python and ModelBuilder. The tool must be documented and capable of gracefully handling errors. Software: ArcGIS Desktop, Notepad++, IDLE - Python IDE, other Python IDE according to student choice.

GIS 6345. Geospatial Programming. 3 Hours. Introduces basic concepts in computer programming for geospatial data with a focus on the Python language. Applies learned approaches to geospatial analysis and accessing Python packages for spatial data science. Examples include shapely, pandas, NumPy, matplotlib, and SciPy.

GIS 6350. Planning a GIS Implementation. 3 Hours. Emphasizes the process of planning a GIS implementation so an organization ends up with the “right” GIS. GIS has the potential to benefit many different types of organizations in many different ways. Focuses on understanding the planning process and the issues involved in preparing for the implementation of a GIS within a multisuser environment. Assignments help students grasp the various stages of the process, including the understanding of organization strategy, needs assessments, capability definition, data design, system requirements, and organizational impacts. While the class uses enterprise-level GIS as the context for the planning process, the process discussed can also be applied to smaller-scale organizations and systems. This course assumes a basic understanding of GIS and basic information technology concepts. Software: N/A.

GIS 6360. Spatial Databases. 3 Hours. Offers students an opportunity to develop skills in acquiring and building spatial data and maintaining spatial databases. Emphasizes Personal, Workgroup, and Enterprise ArcSDE geodatabases, topology, and versioned editing. Analyzes fundamental theoretical knowledge about information systems and the unique demands created by geographic information. Material includes data modeling and knowledge representation for spatial data, database schemas and models, and architectural principles for GIS. Students use database documentation (metadata) and SQL tools to query and update database attributes. Requires a final project to create a complete geodatabase representative of a spatial database used to support a real-world application. Software: ArcGIS Desktop Advanced; ArcSDE/Microsoft SQL Server enterprise geodatabase; OSpatial application to query and create data in a Microsoft SQL Server database.

Search GIS Courses using FocusSearch (http://catalog.northeastern.edu/class-search/?subject=GIS/)
GIS 6370. Internet-Based GIS. 3 Hours.
Introduces the basic concepts associated with publishing spatial data and serving maps on the internet. Topics covered include copyright, federal, state, and local laws about spatial data sharing; map creation with web and desktop client applications; web map coding using Open Source and proprietary APIs; publishing advanced geoprocessing services. Offers students an opportunity to create a polished web mapping application that leverages Open Source or proprietary internet GIS technologies on both server and client side. Software: Google Earth, Google Maps, ArcGIS Explorer Desktop, ArcGIS Desktop, ArcGIS Online, GeoServer, SFTP software (e.g., FileZilla, FireFTP, Cyberduck, etc.), and Carto.

GIS 6385. GIS/Cartography. 3 Hours.
Introduces the principles and concepts essential to thoughtful, informative, aesthetic, and effective map composition and layout. Among the topics included are color theory, typography, data classification and symbology, cartographic design, critique, and production. Focuses on foundational cartographic concepts to improve the student’s ability to create geographic visualizations that can communicate GIS information effectively. Software: Required: ArcGIS Desktop (ArcMap) for all hands-on class assignments other than the project. Optional: Students may use software of choice for the project, e.g., QGIS, Illustrator, ArcGIS Pro, or any other software (commercial or FOSS), although no instructional support is provided.

GIS 6390. Business Applications of Geographic Information Systems. 3 Hours.
Explores the use of a geographic information system for business applications. Introduces spatial data analysis as it applies to sales, marketing, and demographic analysis; service and sales territories; call planning and routing; and reporting and presentation mapping. Offers students an opportunity to develop applied methods of conducting a spatial data compilation project through a variety of situational tutorials (e.g., SpatialLabs “Business Trade Area Market Analysis”), including defining the database, writing a research proposal, completing an analysis, and presenting the results in written form. Software: ArcGIS Desktop, with the Esri Business Analyst Premium Extension, and access to Business Analyst Online.

GIS 6391. Healthcare Applications of Geographic Information Systems. 3 Hours.
Examines the concepts, principles, approaches, and techniques of geographic analysis in the context of local, regional, and global public health problems. Examines the application of GIS in the health industry as it is used by local agencies, such as public health units and larger entities, such as the Centers for Disease Control (CDC) and the World Health Organization (WHO). Offers students an opportunity to examine sources of data, create data collection tools for use in a healthcare context, integrate methods, and share these results via a web mapping interface through a variety of situational tutorials, culminating in a final course project. Software: ArcGIS Desktop, Survey123, ArcGIS Online, QGIS, Fulcrum, and Carto.

GIS 6394. Crisis Mapping for Humanitarian Action. 3 Hours.
Uses and critiques crisis mapping technology and work flows that enhance data collection, analysis, and distribution of location-based information used for humanitarian action. Students investigate and contribute to a real-life digital humanitarian deployment via OpenStreetMap (OSM); complete the Standby Task Force workshops to prepare them to assist when a deployment occurs; and are offered an opportunity to become acquainted with FrontlineSMS—a way that mobile devices leverage SMS and radio, for example—in new ways. Draws theories and methods from political science and GIS. Interdisciplinary, involving GIS, collective action and information theory, human security and human rights frameworks, development issues, conflict theory, urbanization, and climate change. Software: Ushahidi/Crowdmap, OSM software, KoBo Toolbox, Afghanistan Spatial Data Center, InaSAFE.

GIS 6395. Geospatial Analysis of Crime. 3 Hours.
Discusses and evaluates different spatial criminological theories. Students analyze spatial crime data using spatial distribution, hot spot analysis, and density mapping, with a focus at the local level using data sets from the Northeastern University Police Department (NUPD). Students formulate and test a hypothesis in a comprehensive project involving data input, manipulation, and analysis in partnership with the NUPD using visualization techniques to demonstrate their analysis. Software: ArcGIS; CrimeStat; Tableau; QGIS.

GIS 6962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

GIS 6980. Capstone. 1-4 Hours.
Offers students an opportunity to integrate their course work, knowledge, and experiences into a capstone project. Emphasizes student responsibility, development of individual competencies, and geospatial analytical techniques and methods. Learning strategies encourage self-motivation and autonomy to discover work in a supportive environment with guidance and clear expectations. The class proceeds by outlining key milestones and showing examples of deliverables to visualize the process and the desired outcomes; coaching, feedback, and guidance throughout the learning process; and structured discussions, formative assessments, and journaling via e-portfolio to elicit articulation and reflection—two key processes in effective learning. Students are expected to create a conference-ready poster, present their work orally, and assemble a showcase e-portfolio.

GIS 6983. Topics. 1-4 Hours.
Covers special topics in geographic information systems. May be repeated without limit.

GIS 6995. Project. 1-4 Hours.
Focuses on in-depth project in which a student conducts research or produces a product related to the student’s major field. May be repeated without limit.