ENVR 1000. Marine and Environmental Sciences at Northeastern. 1 Hour.
Intended for first-year students in the College of Science. Introduces students to liberal arts; familiarizes them with their major; develops the academic skills necessary to succeed (analytical ability and critical thinking); provides grounding in the culture and values of the University community; and helps to develop interpersonal skills—in short, familiarizes students with all skills needed to become a successful university student.

ENVR 1101. Environmental Science. 4 Hours.
Focuses on the complex array of topics that collectively form the discipline of environmental science. Emphasizes the problems facing today's natural, human-managed, and coupled human/natural ecosystems and the solutions to those problems. Studies the human dimensions of environmental science, including culture, politics, worldviews, ethics, and economics, particularly within the context of global climate change. Offers students an opportunity to learn to analyze data as a means of exploring relationships among societal and ecological drivers affecting economic, ecological, and socioeconomic stability; to learn how the scientific method is used to separate fact and data from opinion; and to apply these methods to explore the causes and solutions to global climate change.

ENVR 1103. Age of Dinosaurs. 4 Hours.
Utilizes evidence from the sedimentary rock record to evaluate and to interpret significant biological and physical events in Mesozoic earth history. Changes in the Earth's landscape due to variations in climate, plate tectonics, and sea level provide the background for detailed consideration of Mesozoic life. Emphasizes the evolutionary history of dinosaurs and provides detailed data for testing hypotheses of evolutionary mechanisms, paleobiogeography, functional anatomy, ecology and community structure, and extinction and extinction models.

ENVR 1104. Natural Disasters and Catastrophes. 4 Hours.
Provides an overview of what we know about the causes, locations, and effects of some of the most important natural disasters such as earthquakes, floods, and hurricanes. Also examines how loss of life and property damage can be minimized by implementing geologic knowledge. Briefly examines less common but possibly more devastating catastrophes such as large volcanic eruptions, large meteorite impacts, and rapid climate change.

ENVR 1110. Global Climate Change. 4 Hours.
Analyzes Earth's modern climate system and natural climate change over Earth's 4.5-billion-year history. Examines ongoing and future climate change. Includes expected impacts of the predicted climate changes as well as mitigation and adaptation options.

ENVR 1111. Weather and Climate. 4 Hours.
Discusses the patterns and processes that combine to produce our daily weather and how weather integrates over time to define climate. Identifies natural and human-made causes of climate change.

ENVR 1112. Environmental Geology. 4 Hours.
Investigates geologic processes such as flooding, volcanic eruptions, and earthquakes, as well as strategies for safer land use incorporating geologic information. Exercises completed and discussed in class offer hands-on experience with evaluating geologic factors that impact land use and formulating hazards mitigation strategies. Offers students an opportunity to increase their understanding of problems resulting from the interaction of humans with the geologic environment and how we can more appropriately interact with it.

ENVR 1120. Oceans and Coasts. 4 Hours.
Explores the marine and coastal realm and the problems that arise from the human-marine relationship. Begins by studying the history of the ocean and ends with how to create a more sustainable marine world. Topics covered include ocean and estuarine circulation, climate change and ocean response, and the plant and animal life thriving in different parts of the ocean. Includes reading and analyzing the scientific literature, developing and presenting research projects, and group work.

ENVR 1121. Marine Resources. 4 Hours.
Provides a qualitative and quantitative survey of renewable and nonrenewable resources from the sea. Topics include coral reefs, shellfish, marine mammals, sharks, sport and recreational fishing, clams, lobsters, shrimp, toxic seafood, energy from the ocean, ocean pollution, shore erosion, beaches, coastal zone recreation, marine law, and law of the sea.

ENVR 1140. Physical Geography. 4 Hours.
Introduces physical geography for students in history, political science, economics, or other social sciences who intend to pursue a career in education or other social sciences.

ENVR 1145. Volcanoes. 4 Hours.
Offers students an opportunity to understand how volcanoes work, why volcanoes occur, where volcanoes occur, and what their impacts have been throughout human history and prehistoric times. Also address strategies for safer land use around active volcanoes.

ENVR 1200. Dynamic Earth. 4 Hours.
Offers a systematic study of the materials and systems comprising the earth. Emphasizes the processes that form, transport, alter, and destroy rocks, as well as the nature and development of landscape. Plate tectonics theory is introduced as a guiding paradigm in geology.

ENVR 1201. Lab for ENVR 1200. 1 Hour.
Accompanies ENVR 1200. Covers exercises pertaining to mineral and rock identification and topographic and geologic map interpretation. Required for environmental geology and geology majors.

ENVR 1202. History of Earth and Life. 4 Hours.
Traces biological and environmental development of the earth over the past 4.6 billion years using evidence preserved in the rock record. A primary goal is to understand how geoscientists interpret earth history by learning how to test hypotheses and develop explanations for events that occurred far in the geologic past. Examination of major earth systems, the biosphere, lithosphere, atmosphere and hydrosphere, reveals how they interact to control the origin of earth, the origin and evolution of life, the causes and effects of extinction, plate tectonics and mountain building, and climate change over earth history.

ENVR 1203. Interpreting Earth History. 1 Hour.
Focuses on students using sedimentary rocks, fossils, and geologic maps and stratigraphic sections to record and to interpret events in earth history.

ENVR 1445. Environment and Humankind. 4 Hours.
Offers an ecological analysis of human interaction with other organisms. Presents the necessary foundation of biological principles.

ENVR 1990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.
ENVR 2310. Earth Materials. 4 Hours.
Describes the physical and chemical characteristics of common rock-forming minerals and geologic processes that form rock and soils in the igneous, sedimentary, and metamorphic environments. Focuses on commonly encountered minerals, soil, and rock types and how these are used to interpret past and present earth processes. This is a writing-intensive course with a required term paper.

ENVR 2311. Lab for ENVR 2310. 1 Hour.
Accompanies ENVR 2310. Cover topics from the course through various experiments.

ENVR 2340. Earth Landforms and Processes. 4 Hours.
Focuses on the origin and evolution of landscape features by processes operating at or near the earth’s surface. Exercises introduce interpretation of air photos, topographic maps, remotely sensed data, and digital elevation models.

ENVR 2341. Lab for ENVR 2340. 1 Hour.
Accompanies ENVR 2340. Covers topics from the course through various experiments.

ENVR 2500. Biostatistics. 4 Hours.
Offers an overview of traditional and modern statistical methods used to analyze biological data using the free and open-source R programming environment. Lectures describe core statistical approaches and discuss their suitability for understanding patterns that arise at different levels of biological organization, from cellular processes to whole ecosystems. Supervised lab sessions offer students an opportunity to develop R programming skills required to analyze the complex datasets that often emerge when addressing cutting-edge questions in biology. Topics include basic probability and sampling theory, experimental design, null hypothesis significance testing, t-tests and ANOVA, correlation and regression, Monte Carlo simulations, likelihood, generalized linear models, model selection, and information theory.

ENVR 2501. Lab for ENVR 2500. 1 Hour.
Accompanies ENVR 2500. Offers supervised lab sessions demonstrating how topics covered in the lectures can be addressed in the R programming environment.

ENVR 2900. Special Topics in Environmental Studies. 4 Hours.
Studies various topics on environmental issues. May be repeated without limit.

ENVR 2940. Oceans in the Global Carbon Cycle. 4 Hours.
Examines the role of the oceans in the climate system, addressing topics such as the global carbon cycle, the thermohaline circulation, and aspects of global change including warming and sea level rise. As a sink and a buffer for carbon dioxide in the atmosphere, and as a major mechanism of heat transport between the equator and high latitudes, the role of the oceans in setting the Earth’s climate is indisputable. Requires acceptance into the SEA Semester Program and completion of three lab science courses.

ENVR 2941. Lab for ENVR 2940. 1 Hour.
Accompanies ENVR 2940. Covers topics from the course through various experiments.

ENVR 2942. Maritime History and Culture: The Caribbean. 4 Hours.
Explores political, cultural, and social changes in the Caribbean since before Europeans arrived at the end of the fifteenth century. Starting from the maritime landscape of winds, currents, islands, and harbors, we see how the physical nature of the region has influenced patterns of settlement and development from the time of the Arawaks and Caribs to the commodification of the Caribbean as a modern tourist destination. Other topics include the impact of European expansion on peoples throughout the Atlantic world, especially at the transportation of some 5 million enslaved Africans into the Caribbean region; at the technology that underpinned European expansion; and at the cultural expressions that document the extraordinary demographic changes that transformed the islands. Requires acceptance into the SEA Semester Program.

ENVR 2943. Marine Environmental History: The Caribbean. 4 Hours.
Explores the interaction of ecological factors in ocean, coastal, and island environments; the impact of human actions on those environments; and the need for local, regional, and international responses and strategies to mitigate and manage that impact. The enormous environmental changes that have taken place in the Caribbean Islands over the last five centuries provide us with a regional example of global issues. Looks at issues of resource exploitation, pollution, development, and the introduction of non-native species and attempts to understand the process by which we come to an intelligent understanding of these issues. Requires acceptance into the SEA Semester Program.

ENVR 2990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

ENVR 3000. Igneous Petrology and Volcanology. 4 Hours.
Examines the origin and nature of igneous rocks in general and volcanoes in particular. Surveys the characteristics and classification of igneous rocks, with a special emphasis on studying volcanic eruptive products and the nature of volcanic eruptions. Also covers the environmental impact and monitoring of volcanic activity.

ENVR 3001. Lab for ENVR 3000. 1 Hour.
Accompanies ENVR 3000. Exercises emphasize the identification and classification of igneous rocks as seen in hand specimen and with the aid of a petrographic microscope.

ENVR 3100. Oceanography. 3 Hours.
Introduces students to the scientific study of the ocean. Teaches basic understanding of global ocean processes and a more in-depth understanding of the waters through which students sail during their subsequent Sea Component. Covers the four interrelated disciplines of oceanography—physics, chemistry, biology, and geology. The development of proposals for independent student research projects to be carried out at sea is a key component of this shore-based course. Opportunities are provided to discuss current research with scientists working at the cutting edge of marine science. Includes lectures, labs, and field trips. Labs may include study of a coastal pond or salt marsh as an introduction to data collection, processing, chemical analyses, and microscopy that are used onboard ship. Part of the SEA Semester Program. Requires acceptance into the SEA Semester Program and prior completion of one lab science course.
ENVR 3101. Nautical Science. 3 Hours.
Provides the theoretical background necessary for operating vessels at sea through lectures, lab sessions, field trips, and student projects. Covers the principles of navigating a vessel within sight of land; discussions include the earth’s coordinate system of latitude and longitude, nautical charts, and the magnetic compass. Students are also introduced to electronic navigation, including radar and GPS (Global Positioning System), and celestial navigation to fix the navigator’s position at sea. Topics include Archimedes’ principle, Newton’s laws, the Bernoulli effect, Boyle’s law, and mechanical advantage as applied to the study of vessels and their operation; vessel handling under sail; center of effort; operations under power; and vessel design. Classroom lectures, discussions, and student projects focus on learning about global, regional, and local weather. Part of the SEA Semester Program. Requires acceptance into the SEA Semester Program.

ENVR 3102. Maritime Studies. 3 Hours.
Focuses on a multidisciplinary study of the sea and sea voyage in the Western tradition and the role of the sea in the historical development of the modern world system of labor, trade, and scientific resource management. Tales of the sea from literature are supplemented with classic films, paintings, and songs. Together, students explore the expectations that they, as products of American popular and high culture, bring to their impending sea voyage. Through further readings, lectures, and field studies, students explore the uses we have made of the sea— from fishing and whaling to scientific exploration and warfare—with an eye toward understanding the roots of contemporary maritime affairs. Part of the SEA Semester Program. Requires acceptance into the SEA Semester Program.

ENVR 3103. Oceanographic Field Methods. 4 Hours.
Exposes students to the skills and knowledge of the practicing oceanographer by observation and application of the concepts and sampling techniques introduced onshore. Tasks include carrying out routine lab procedures; extracting physical data for students’ research projects and for SEA’s ongoing oceanographic studies; processing chemical and biological samples; safely programming, deploying, and recovering oceanographic equipment; and maneuvering and positioning the vessel for each research station. Each day students participate in lectures, discussions, or hands-on study of specific topics in oceanography and nautical science. Part of the SEA Semester Program. Requires acceptance into the SEA Semester Program.

ENVR 3104. Advanced Oceanographic Field Methods. 4 Hours.
Continues ENVR 3103. Focuses on the completion of student research projects and increasing responsibility for routine lab work, the sampling program, and operation of the vessel. The goal is for students to oversee the lab watch, direct their peers, plan and carry out station work with minimal staff supervision, finish analyzing and interpreting their data, complete written research papers, and present their research in a formal seminar format. May culminate with one or more ship’s missions, which usually involves study of a particular area, either for SEA’s data collections or at the request of another scientific agency, and allows students to integrate their nautical and science knowledge and to direct the vessel and its operation. Part of the SEA Semester Program. Requires acceptance into the SEA Semester Program.

ENVR 3105. Practical Oceanographic Research. 3 Hours.
Guides students at sea from an introductory learning phase to increasing responsibility in station planning, equipment deployment, and data interpretation. Each day, students participate in lectures, discussions, or hands-on study of specific topics in oceanography, nautical science, or maritime studies. Students also receive individual and small-group instruction by the scientific and nautical staff during regular watches in the lab and on deck. Focuses on analyzing and interpreting data, completing a written research paper, and presenting the research to the ship’s company in a formal seminar format. The end of the cruise may also culminate in one or more missions, allowing students to integrate their nautical and science knowledge and to direct the vessel and its operation. Part of the SEA Semester Program. Requires acceptance into the SEA Summer Session Program.

ENVR 3125. Global Oceanic Change. 4 Hours.
Explores major changes in physical, biological, and chemical properties of the ocean over geological and human timescales. Includes origin and early evolution of the oceans; sea-level change; global warming; ocean acidification; the role of plate tectonics in driving long-term oceanic change; the role of atmospheric carbon dioxide in driving short-term oceanic change; tipping points in the oceans; snowball earth theory; marine pollution; oil exploration; and social, economic, and political implications of global oceanic change. Themes include differentiating drivers of change across multiple temporal and spatial scales; evaluating change from different and sometimes conflicting perspectives (social, economic, political, environmental); differentiating local and global change; and establishing linkages between physical, chemical, and biological processes in the ocean. Requires prior completion of one laboratory science course or permission of instructor.

ENVR 3200. Water Resources. 4 Hours.
Offers students who wish to work in the area of water resources an opportunity to understand the issues related to water’s availability and behavior at the Earth’s surface. Topics covered include (1) the hydrologic cycle, including global and regional patterns of water movement; (2) characteristics of surface and groundwater systems, including the linkage between streams, rivers, lakes, wetlands, groundwater, and the sea; (3) water management issues and regulations that have been enacted to control the use of water as a resource; (4) water quality measures for surface water and groundwater; and (5) examples of water use conflicts and emerging water issues. Case studies include examples from California, New England, New York, the southwestern United States, China, Africa, and the Middle East.

ENVR 3300. Geographic Information Systems. 4 Hours.
Studies how to use a geographic information system (GIS). Explores the practical application of GIS to support scientific and social inquiry, analysis, and decision making. Topics include spatial data collection; data accuracy and uncertainty; cartographic principles and data visualization; geographic analysis; and legal, economic, and ethical issues associated with using GIS. Investigates case studies from geology, environmental science, urban planning, architecture, social studies, and engineering. Provides extensive hands-on experience with a leading commercial GIS software package. Offers students an opportunity to conceive their own research problem that can be addressed using GIS and reach conclusions that are summarized in a professional report. Students who do not meet course prerequisites may seek permission of instructor.

ENVR 3301. Lab for ENVR 3300. 1 Hour.
Accompanies ENVR 3300. Covers topics from the course through various experiments.
ENVR 3302. Introduction to Remote Sensing. 4 Hours.
Explores the fundamental concepts of remote sensing of the environment. Topics include digital imagery from spacecraft, conventional and high-altitude aerial photography, orthophotography production, and surface modeling systems. Offers hands-on experience with basic functions of industry standard image processing software. Students who do not meet course prerequisites may seek permission of instructor.

ENVR 3303. Lab for ENVR 3302. 1 Hour.
Accompanies ENVR 3302. Covers topics from the course through various applied activities.

ENVR 3400. Field Geology. 4 Hours.
Provides hands-on training in field mapping techniques for geologic applications. Emphasizes making field observations of rocks and geologic structures and depicting them on geologic maps, cross sections, and in field notes. Meets at various field locations in the area. Fulfills the college's experiential education requirement for geology majors.

ENVR 3410. Environmental Geochemistry. 4 Hours.
Provides a context for understanding environmental problems through studies in atmospheric, terrestrial, freshwater, and marine geochemistry. Topics include aqueous geochemistry, environmental chemical analysis, nature and source of hazardous wastes (environmental chemistry, reduction, treatment and disposal), acid rain, ozone hole, nuclear winter, green engineering, and alcohol production.

ENVR 3418. Geophysics. 4 Hours.
Studies the basic techniques of reflection and refraction seismology and earthquake analysis; gravity and magnetic surveying methods; radioactive decay principles and Earth's heat flow; and how information from these methods are used to interpret the nature and age of the Earth's surface and interior. Emphasizes near-surface exploration, data collection methods, data analysis, and using data to constrain mathematical models of the subsurface distribution of geologic units.

ENVR 3990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

ENVR 4106. Coastal Processes. 4 Hours.
Examines the effect of coastal marine processes and the resultant coastal responses. Topics include the dynamics of waves and currents and the associated erosion, transportation, and deposition of sediment- forming beaches, barrier islands, and cliffed shorelines.

ENVR 4107. Lab for ENVR 4106. 1 Hour.
Accompanies ENVR 4106. Covers topics from the course through various experiments.

ENVR 4500. Applied Hydrogeology. 4 Hours.
Covers the origin, distribution, and flow of groundwater in permeable sediments and bedrock; hydrological and geological characteristics of aquifers; regional flow systems emphasizing rock structure, stratigraphy, and other aspects of the geological environment; principles of hydrogeologic mapping and analysis; and introduces well testing and well hydraulics. Uses methods of collecting data about the physical distribution and properties of water and its interaction with geologic materials in the subsurface, including its chemical composition, and mathematical models to interpret the direction and velocity of groundwater flow. Considers remediation strategies for dealing with contaminated water in the subsurface.

ENVR 4501. Lab for ENVR 4500. 1 Hour.
Accompanies ENVR 4500. Covers topics from the course through various experiments.

ENVR 4504. Environmental Pollution. 4 Hours.
Surveys pollution in our atmosphere, on land, and in our oceans. Offers students an opportunity to develop the skills to understand the sources, processes, and fate of environmental contaminants in surface and groundwater, soils, sediment, and biota, with special focus on organic contaminants. Links environmental chemistry with ecotoxicology through an understanding of bioaccumulation, food web models, and risk assessment. Uses case studies and real-world scenarios to illustrate important concepts. Emphasizes innovative solutions for pollution remediation. Discusses current pollution issues and how to clearly communicate these issues to a broad audience. Students who do not meet course prerequisites may seek permission of instructor.

ENVR 4505. Wetlands. 4 Hours.
Presents an interdisciplinary overview of the physical, biological, and cultural aspects of wetlands. Topics covered include definitions, classification systems, origins, human use, and natural processes of wetland environments. Offers students an opportunity to learn about wetland hydrology, soils, and vegetation and their relationship to ecosystem processes, societal values, and management. Includes reading and analyzing the scientific literature and conducting in-class activities.

ENVR 4515. Sustainable Development. 4 Hours.
Focuses on the development of communities in an environmentally sustainable way and on the division of natural resources within these communities and the global system. Defines and discusses "sustainable development" and its global role today. Exposes students to a history of developmental methods while learning about the interconnectedness of development and the environment. Encourages students to draw conclusions about the environmental impacts of these methods and to consider more equitable uses of natural resources.

ENVR 4563. Advanced Spatial Analysis. 4 Hours.
Provides an in-depth evaluation of theoretical, mathematical, and computational foundations of geographic information systems (GIS). Topics include spatial information theory, database theory, mathematical models of spatial objects, and GIS-based representation. Examines advanced concepts and techniques in raster-based GIS and high-level GIS modeling techniques. May be repeated without limit.

ENVR 4900. Earth and Environmental Science Capstone. 1 Hour.
Designed for students enrolled in concert with an approved 500–600-level environmental studies course (check with department office for up-to-date listings). Faculty help students to identify topics for individual research tailored to students' interests and the course content. Provides an opportunity for reflection about what the student has learned in the major, in their NU Core course work, and experiential learning. Required components include writing with revision and an oral presentation at a departmentwide capstone seminar late in the semester.

ENVR 4965. Undergraduate Teaching Experience 1. 4 Hours.
Offers an opportunity for qualified undergraduate students to serve as undergraduate teaching assistants. Requires various assignments closely directed by the assigned course instructor. These may include holding office hours, light grading, maintaining the records for the course, proctoring—but not solely administering—exams and quizzes, holding recitation/tutorial sessions, and (very) limited lecturing or leading class discussions. Requires minimum overall GPA of 3.333 and grade of A— or better in course assignment; permission to enroll is further subject to the availability of an appropriate course assignment and instructor.
ENVR 4966. Undergraduate Teaching Experience 2. 1 Hour.
Offers an opportunity for qualified undergraduate students to continue to serve as undergraduate teaching assistants. Requires various assignments closely directed by the assigned course instructor. These may include holding office hours, light grading, maintaining the records for the course, proctoring—but not solely administering—exams and quizzes, holding recitation/tutorial sessions, and (very) limited lecturing or leading class discussions. May incur a one-credit overload charge. Requires minimum overall GPA of 3.333 and grade of A– or better in course assignment; permission to enroll is further subject to the availability of an appropriate course assignment and instructor.

ENVR 4970. Junior/Senior Honors Project 1. 4 Hours.
Focuses on in-depth project in which a student conducts research or produces a product related to the student’s major field. Combined with Junior/Senior Project 2 or college-defined equivalent for 8-credit honors project. May be repeated without limit.

ENVR 4971. Junior/Senior Honors Project 2. 4 Hours.
Focuses on second semester of in-depth project in which a student conducts research or produces a product related to the student’s major field. May be repeated without limit.

ENVR 4990. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

ENVR 4992. Directed Study. 1-4 Hours.
Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

ENVR 4993. Independent Study. 1-4 Hours.
Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

ENVR 4994. Internship. 4 Hours.
Offers students an opportunity for internship work. May be repeated without limit.

ENVR 4996. Experiential Education Directed Study. 4 Hours.
Draws upon the student’s approved experiential activity and integrates it with study in the academic major. Restricted to those students who are using the course to fulfill their experiential education requirement. May be repeated without limit.

ENVR 4997. Senior Thesis. 4 Hours.
Offers students an opportunity to prepare an undergraduate thesis under faculty supervision.

ENVR 5105. Geophysics. 4 Hours.
Examines the physical processes of sediment erosion, transportation, and deposition and the origin of sediment. Emphasis is on the effect of coastal marine processes and resultant responses of the coast. Topics include the dynamics of waves and currents and such coastal landforms as beaches, barriers, salt marshes, and bluffed and rocky coasts. (a) ENVR 1112, ENVR 1200, or graduate standing and (b) MATH 1241, MATH 1251, MATH 1341, or graduate standing and (c) junior, senior, or graduate standing.

ENVR 5110. Coastal Sedimentation. 4 Hours.
Examines a current environmental issue or topic through an understanding of the scientific principles controlling the process, review of alternative actions, and inquiry into societal implications of the issue. Topics include groundwater supply, groundwater contamination, coastal erosion and flooding, or impacts of land development.
ENVR 5240. Sedimentary Basin Analysis. 4 Hours.
Presents the analysis of sedimentary basins based on detailed study of sedimentary petrology, sedimentary structures, and stratigraphic sequences and fossils.

ENVR 5241. Lab for ENVR 5240. 1 Hour.
Accompanies ENVR 5240. Lab work uses geologic sections, suites of sedimentary rocks and thin sections, and drill cores and bore hole logs to interpret and analyze the geologic history and environmental and economic potential of sedimentary basins.

ENVR 5242. Ancient Marine Life. 4 Hours.
 Begins with a survey of major events, processes, and important invertebrate phyla preserved in the fossil record. This knowledge of paleontology is then utilized to evaluate evolutionary principles and the nature of function and adaptation in the history of life. Organization of populations into paleocommunities and their relationships to changes in environments through time permit the assessment and evaluation of paleoecology in Earth history.

ENVR 5243. Lab for ENVR 5242. 1 Hour.
Accompanies ENVR 5242. Introduces invertebrate fossil morphology by study of fossil specimens of all major groups. Principles of paleoecology and evolutionary theory are illustrated by analysis of suites of fossil specimens.

ENVR 5244. Sedimentation. 4 Hours.
Describes the physical processes of sedimentation and their role in the interpretation of sedimentary environments.

ENVR 5245. Lab for ENVR 5244. 1 Hour.
Accompanies ENVR 5244. Concentrates on the interpretation and description of the physical properties of sediments and sedimentary environments.

ENVR 5248. Marine Geology. 4 Hours.
Compares the balance between major sedimentary and tectonic forces in ocean basins and margins to the resulting ocean form. Topics include origin of continental margins, shelf sedimentation and transport, deep-sea processes, and sediments. Evaluates resource development of OCS oil, sand and gravel, and manganese nodules.

ENVR 5250. Geology and Land-Use Planning. 4 Hours.
Studies the causes and solutions of geologic environmental problems related to land use. Emphasizes geologic-based land-use planning solutions to problems related to landslides, ground subsidence, coastal erosion, stream erosion, flooding, soil erosion, and groundwater pollution. Assignments are based on actual examples requiring application of concepts covered in the course.

ENVR 5260. Geographical Information Systems. 4 Hours.
Examines geographical information systems (GIS), a way to input, store, analyze, and display spatial data (data with a geographic location). Introduces the major components and applications of this exciting new tool. Consists of two lectures and one laboratory period a week. Laboratory exercises introduce methods of data analysis as well as practical issues of how to manipulate various GIS software packages.

ENVR 5262. GIS Workshop. 2 Hours.
Studies the basic techniques of reflection and refraction seismology, gravity, aeromagnetic and heat-flow processes, and the information they provide on the structure, composition, and dynamics of the earth's interior.

ENVR 5265. Lab for ENVR 5262. 1 Hour.
Accompanies ENVR 5262. Covers topics from the course through various experiments.

ENVR 5270. Glacial and Quaternary History. 4 Hours.
Examines the environmental conditions conducive to forming glaciers, the processes of ice movement, glacial erosion, modes of deposition, and the resulting landforms created under and around glaciers. Introduces the natural climate change of the ice age cycles and the major events of the Quaternary period.

ENVR 5271. Lab for ENVR 5270. 1 Hour.
Accompanies ENVR 5270. Covers topics from the course through various experiments.

ENVR 5272. Engineering Geology. 4 Hours.
Explores engineering geology, the interdisciplinary study of how geology is applied to engineering projects. Covers the application of geologic thought and geophysical methods to the site selection and planning of human-constructed features, such as foundations, landfills, highways, dams, tunnels, power plants, and mines. An individual research project augments class activities.

ENVR 5300. Graduate Research. 4 Hours.
Offers an individual research project under the direction of a faculty member. May be repeated without limit.

ENVR 5400. Marine Science Policy and Ethics. 3 Hours.
Offers ethics training for a critical review of marine policies in the following topical areas: marine environmental ethics (conservation and preservation), conflicts of interest/research integrity, human subjects/mammal protections, ethical challenges in marine science modeling, ethics of fishing governance (marine conservation and regulations), sustainability models for marine sciences, data management, and new models of comanagement and community engagement with marine research. Reviews critical environmental policies affecting marine resources (NEPA, CERCLA, RCRA, Endangered Species, Marine Mammal Protection, and Oil Pollution acts, Magnuson-Stevens Act, etc.). Critically evaluates case studies and ethical review of coastal management for sustainability and pollution control, marine fisheries, and energy development.

ENVR 5976. Directed Study. 1-4 Hours.
Offers independent study of a specific topic not normally contained in the regular course offerings but within the area of competence of a faculty member. May be repeated without limit.

ENVR 5978. Independent Study. 1-4 Hours.
Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

ENVR 5984. Research. 1-4 Hours.
Offers an opportunity to conduct research under faculty supervision. May be repeated without limit.

ENVR 6220. Applied Hydrology. 4 Hours.
Covers the origin, distribution, and flow of groundwater in permeable sediments and bedrock; hydrological and geological characteristics of aquifers; regional flow systems that emphasize rock structure, stratigraphy, and other aspects of the geological environment; principles of hydrogeologic mapping and analysis; and an introduction to well testing and well hydraulics. An individual research project augments class activities.

ENVR 6221. Lab for ENVR 6220. 1 Hour.
Accompanies ENVR 6220. Covers topics from the course through various experiments.
ENVR 6255. Introduction to Remote Sensing. 4 Hours.
Explores the fundamental concepts of remote sensing of the environment. Topics include digital imagery from spacecraft, conventional and high-altitude aerial photography, orthophotography production, and surface modeling systems. Offers hands-on experience with basic functions of industry-standard image-processing software.

ENVR 6962. Elective. 1-4 Hours.
Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

ENVR 6964. Co-op Work Experience. 0 Hours.
Provides eligible students with an opportunity for work experience. May be repeated without limit.

ENVR 6966. Practicum. 1-4 Hours.
Provides eligible students with an opportunity for practical experience. May be repeated without limit.

ENVR 6976. Directed Study. 1-4 Hours.
Offers independent study of a specific topic not normally contained in the regular course offerings but within the area of competence of a faculty member. May be repeated without limit.